

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Controllable and Unified Speech and Singing Voice Generation

Xueyao Zhang

The Chinese University of Hong Kong, Shenzhen

2025/04

About me

Xueyao Zhang (张雪遥)

- School of Data Science, CUHK-Shenzhen
- Amphion co-founder
- ✦ Research interest
 - Speech Generation
 - Al Music

Vevo (ICLR 2025): Controllable and Unified Speech Generation [Paper] [Code] [Model] **Vevo2** (*Ongoing*): Extend Vevo to Singing Voice Generation [Blog] [Code] [Model]

Third-year PhD student, Supervised by Prof Zhizheng Wu Homepage: <u>https://www.zhangxueyao.com/</u>

Project: <u>https://github.com/open-mmlab/Amphion</u> (9k stars)

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement

Question 1

How can we accomplish various zero-shot imitation tasks using a unified framework?

How can we minimize dependency on **annotated data** to maximize the benefits of large-scale self-supervised learning?

Question 2

How can we effectively decouple timbre, style, and content to achieve controllable generation?

Inference Pipeline: Single forward pass, Versatile tasks

Model	Source	Style Reference	Timbre Reference
Vevo-Timbre	$\mathbf{U_i}$	/	Ur
Vevo-Style	$\mathbf{U_i}$	Ur	Ui
Vevo-Voice	$\mathbf{U_i}$	$\mathbf{U_r}$	Ur
Vevo-TTS	Ti	Ur	Ur

[Input] Speech (U_i) or Text (T_i) [Prompt] A reference speech (U_r)

W Unify TTS and VC

Credit to **content-style tokens** that *decouple timbre*

Identity-preserving zero-shot style conversion

Credit to **content tokens** that can be considered as *pseudo texts*.

Key idea: Codebook size as the disentanglement bottleneck

	Representations	#Vocab	WER (↓)	S-SIM (to ref) (†)	S-SIM (to src) (↓)	FPC (to src) (†)	Analysis
	Ground Truth	-	5.526	0.762	0.087	1.000	_
Starting point	24th layer features	-	5.706	0.266	0.400	0.768	
of information	18th layer features	-	5.324	0.250	0.505 ↑	0.824	Pros: Intelligibility, Style consistency
filtering	12th layer features	-	5.348	0.200	0.626 ↑	0.805	Cons: Timbre Imitation
	PPG features	-	6.143	0.449	0.157	0.741	Pros: Intelligibility, Timbre imitation
	ASR tokens	29	7.836	0.463	0.125	0.698	Cons: Style consistency
	K-means tokens	1024	11.493	0.398	0.150	0.734	Worse than VQ-VAE tokens (1024)
	Content-style Tokens	16384	6.807	0.398	0.306	0.826	As the vocabulary size decreases,
	Content-Style Tokens	4096	6.908 ↑	0.403	0.236↓	0.797↓	Pros:
	VO VAE tokona	1024	6.967 ↑	0.418	0.249	0.764↓	Timbre imitation ↑
	VQ-VAE lokens	32	9.731 ↑	0.426	0.161↓	0.706↓	Cons:
	Content Tokens	16	13.169 ↑	0.441	0.146↓	0.672↓	Intelligibility ↓
		8	21.813 ↑	0.392	0.109↓	0.675	Style consistency \downarrow

- 0.706).

(1) From hidden features to content-style tokens, we can see that the timbre leakage issue is significantly mitigated. (S-SIM to ref/src: $0.250/0.505 \rightarrow 0.403/0.236$). Meanwhile, style information is largely preserved (FPC: $0.824 \rightarrow 0.797$). (2) From content-style tokens to content tokens, we observe substantial removal of style information (FPC: $0.797 \rightarrow$

Content-Style Modeling (Content to Content-Style)

Training sample

Training

 $[e_1, e_1, e_1, e_2, e_3, e_3] \rightarrow [e_1, e_2, e_3]$

Duration Reduction

<u>Inference</u>

Remove the style information *like unit-level duration*

Acoustic Modeling (Content to Acoustic)

Training

<u>Inference</u>

What can Vevo do?

Input	Style Reference	Timbre Reference	Results	
I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.	Arabic-accented, Male	Female	Arabic-accented, Female	Style an Control
American-accented, Female	N/A		American-accented, Male	Style an
		Arabic-accented, Male	Arabic-accented, Male	Control
	Arabic-accented, Male	Input	Arabic-accented, Female	Zero-Sho Conv

Conclusions

- 1 Style and timbre controllable zero-shot TTS and VC.
- 2 Zero-shot style conversion (including accent and emotion).
- **3** Fully self-supervised learning, easy to scale up.

Recognition in the Field

Wei-Ning Hsu2025/4/21收件人:222042021 Xueyao Zhang >

回复: Introduction to Our Work "Vevo" at ICLR 2025 & Appreciation for Your Contributions of HuBERT

Hi Xueyao,

Thanks for the nice words and congrats on the acceptance to ICLR. What you discovered is very intriguing. I think we had some preliminary analysis on reducing vocab first discard speaker, but didn't go further to examine on prosody and linguistic. I'll definitely take a closer look at the paper. Unfortunately, I would not be attending ICLR this year. Good luck with the presentation.

Best, Wei-Ning

- Wei-Ning Hsu @ Meta (HuBERT, VoiceBox, Textless S2ST, ...)

Kaizhi Qian星期三收件人:222042021 Xueyao Zhang >

回复: Introduction to Our Work "Vevo" at ICLR 2025 & Appreciation for Your Contributions of AutoVC

Dear Xueyao,

Thank you for your kind message and for sharing your interesting work. I appreciate the thoughtfulness and the effort you've put into your research.

I will take a closer look at Vevo and the ideas you've explored. It sounds like a creative extension of the information bottleneck concept.

Wishing you all the best for your ICLR presentation!

Best regards, Kaizhi

— Kaizhi Qian @ MIT-IBM (AutoVC, SpeechSplit, ContentVec, ...)

Vevo2: Unified Generation for Both Speech and Singing Voice

• Unique Capabilities of Vevo2

- Text to Singing
- Humming to Singing
- Lyric Editing

•

11