

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

A Comprehensive Guide to Amphion's Singing Voice Conversion

The Chinese University of Hong Kong, Shenzhen

Xueyao Zhang

2024/12

About me

Xueyao Zhang (张雪遥)

- Amphion v0.1's co-founder
- - Singing Voice Processing
 - Music Generation

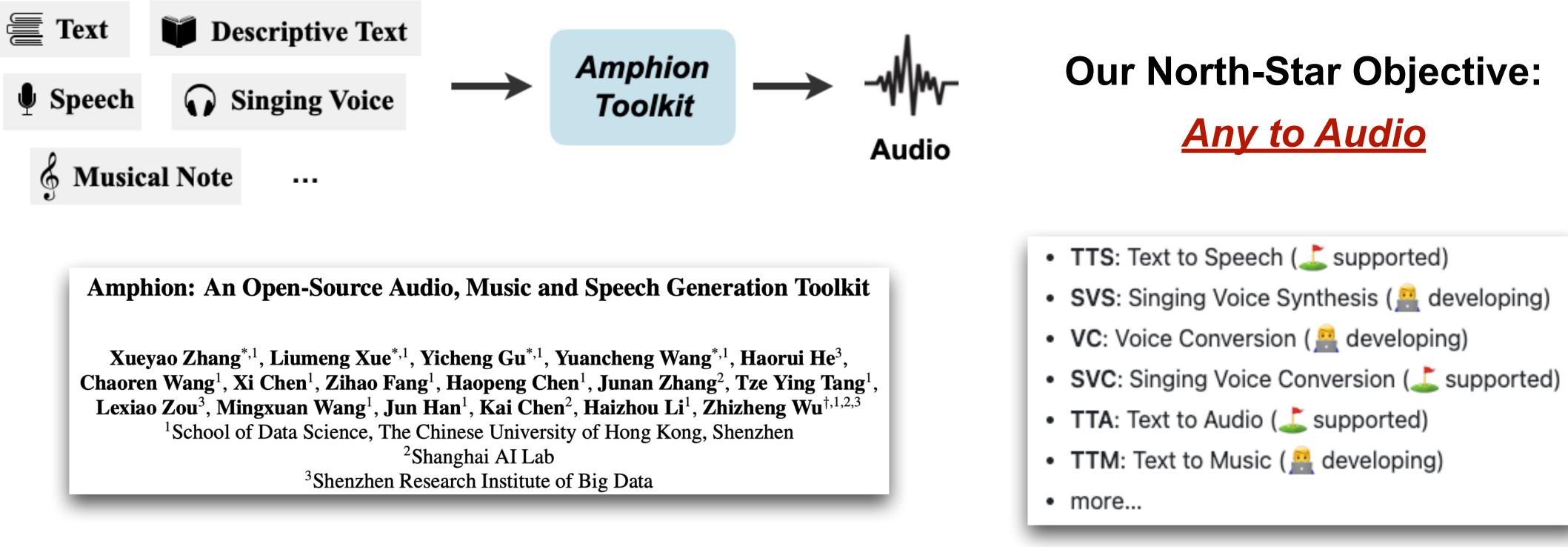
Amphion Technical Report: https://arxiv.org/abs/2312.09911 Amphion GitHub: https://github.com/open-mmlab/Amphion

Third-year PhD student, Supervised by Prof Zhizheng Wu School of Data Science, CUHK-Shenzhen Homepage: <u>https://www.zhangxueyao.com/</u>

Project: <u>https://github.com/open-mmlab/Amphion</u> (7.8k stars)

Research interest: "AI + Music", especially on:

About Amphion



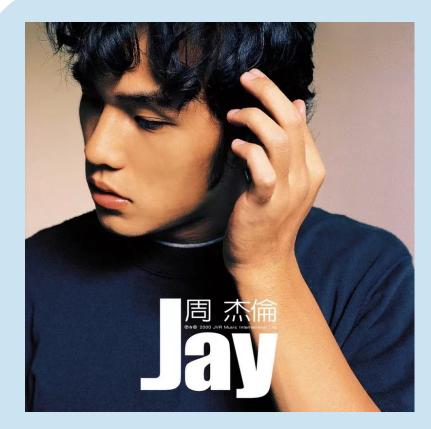
Support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.

Roadmap

- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - 0 Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization 0
- Singing Voice Conversion: Next Steps

Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for

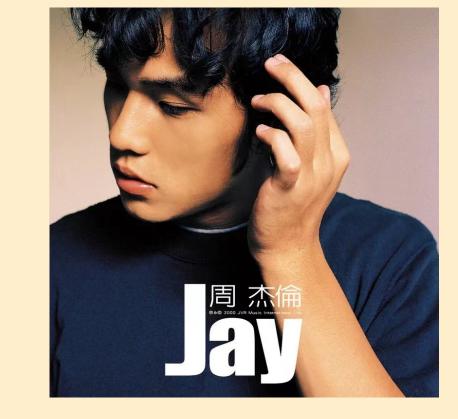
What is Singing Voice Conversion (SVC)?



Professional Singer1

Professional Singer2

Amateur Singer



Professional Singer

Inter-singer Conversion

Speaker

Singer

Cross-domain Conversion

Intra-singer Conversion

Parallel Singing Voice Conversion

Professional Singer1

(Song1, Singer1)

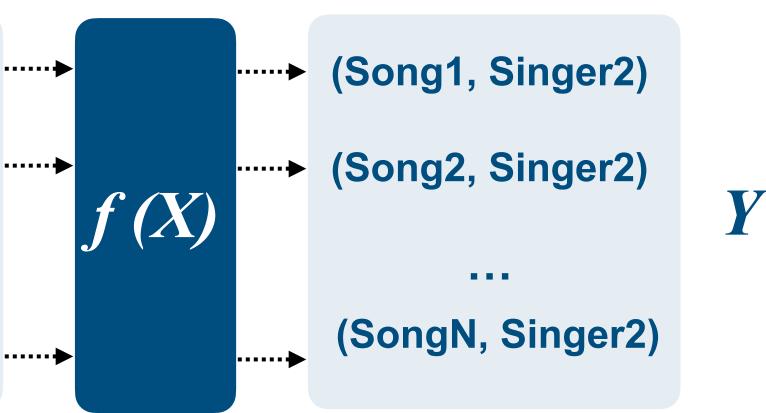
(Song2, Singer1)

(SongN, Singer1)

Limited parallel data

X

Professional Singer2



Limited flexibility

Non-Parallel Singing Voice Conversion

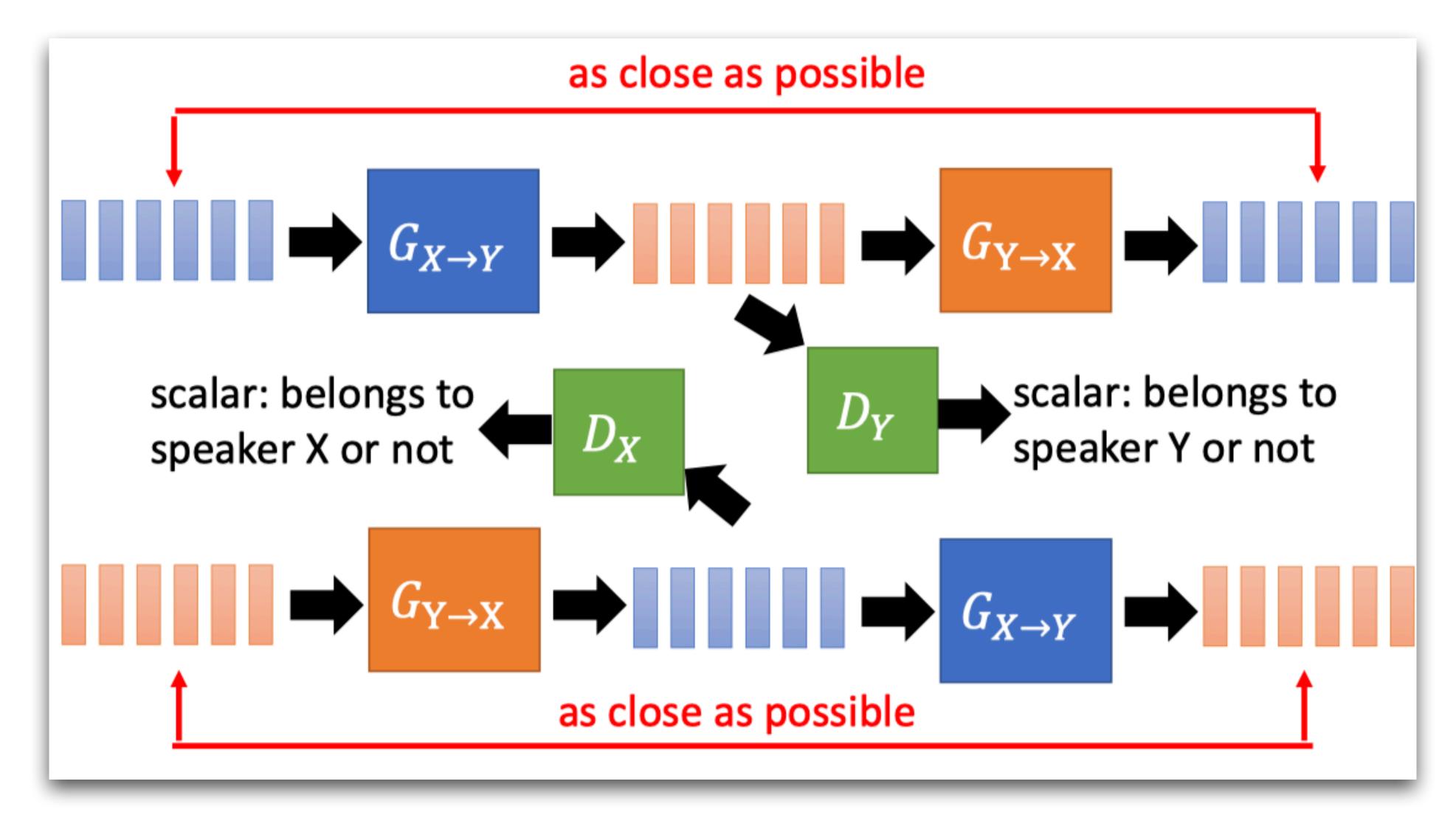
Professional Singer1

Professional Singer2

Singer2's Songs

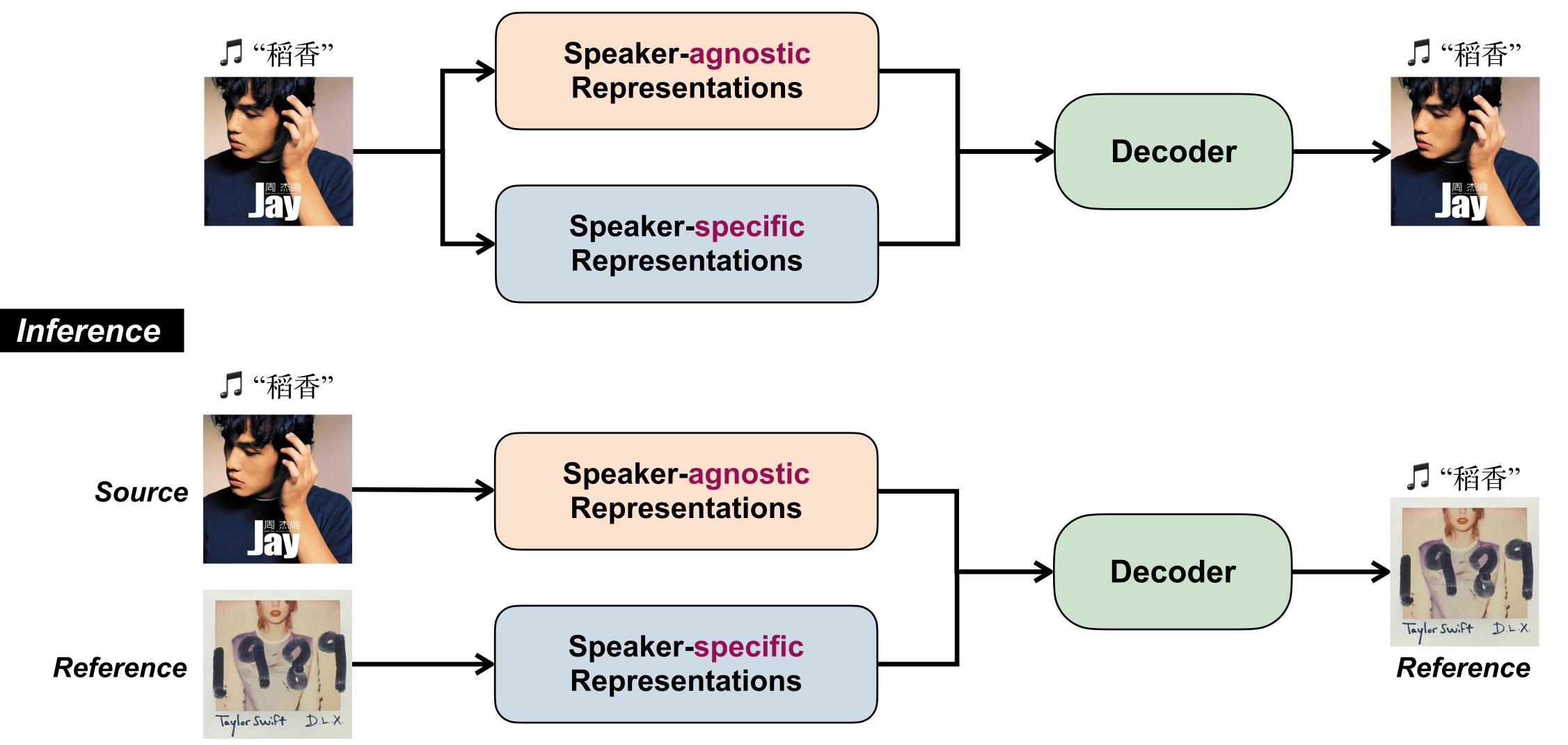
How to decouple the singer identity?

Non-Parallel SVC: GAN School

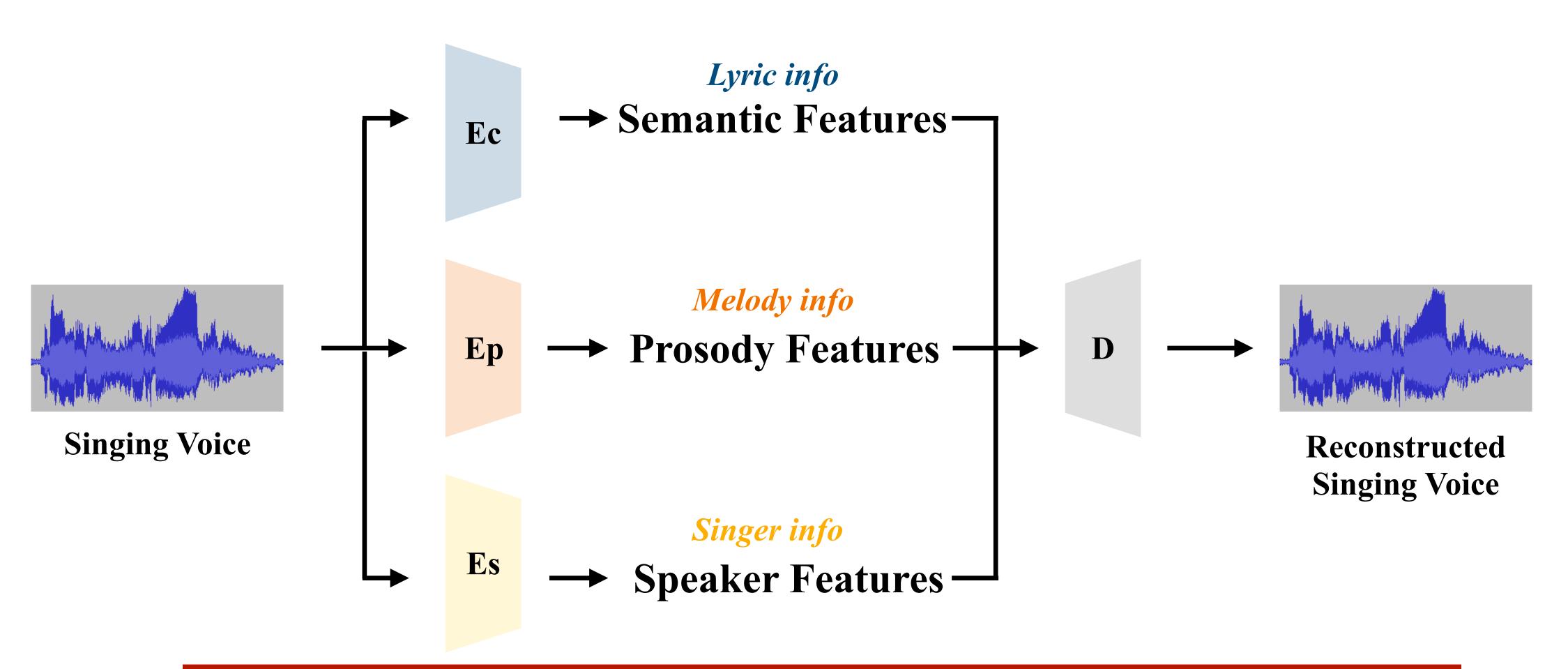


Credit: Voice Conversion, Hung-yi Lee.

Non-Parallel SVC: Auto-Encoder School



Non-Parallel SVC: Auto-Encoder School



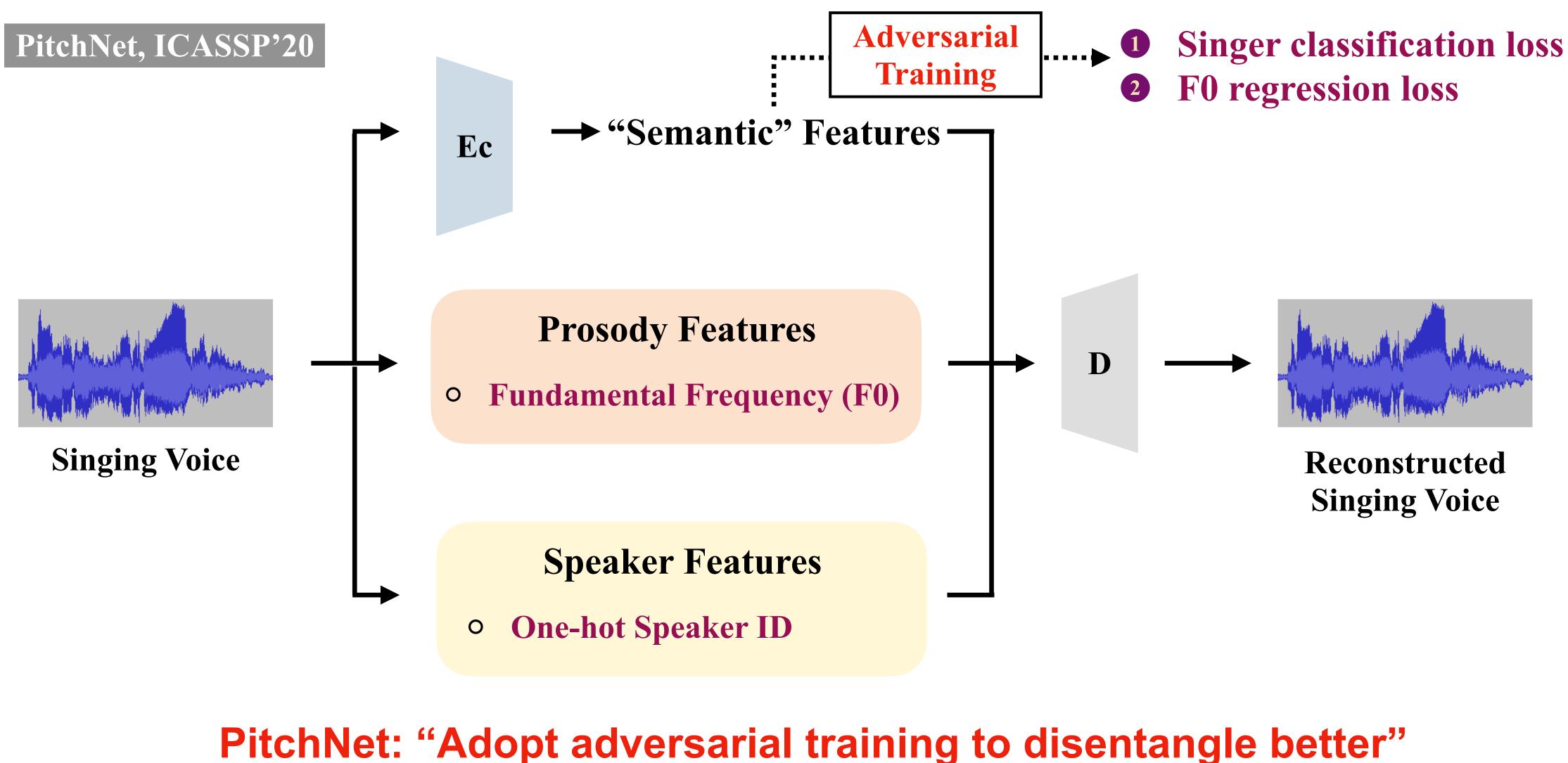
How to ensure the disentanglement of different features? • How to ensure there is enough information of each features?

Auto-Encoder VC: The Early Researches



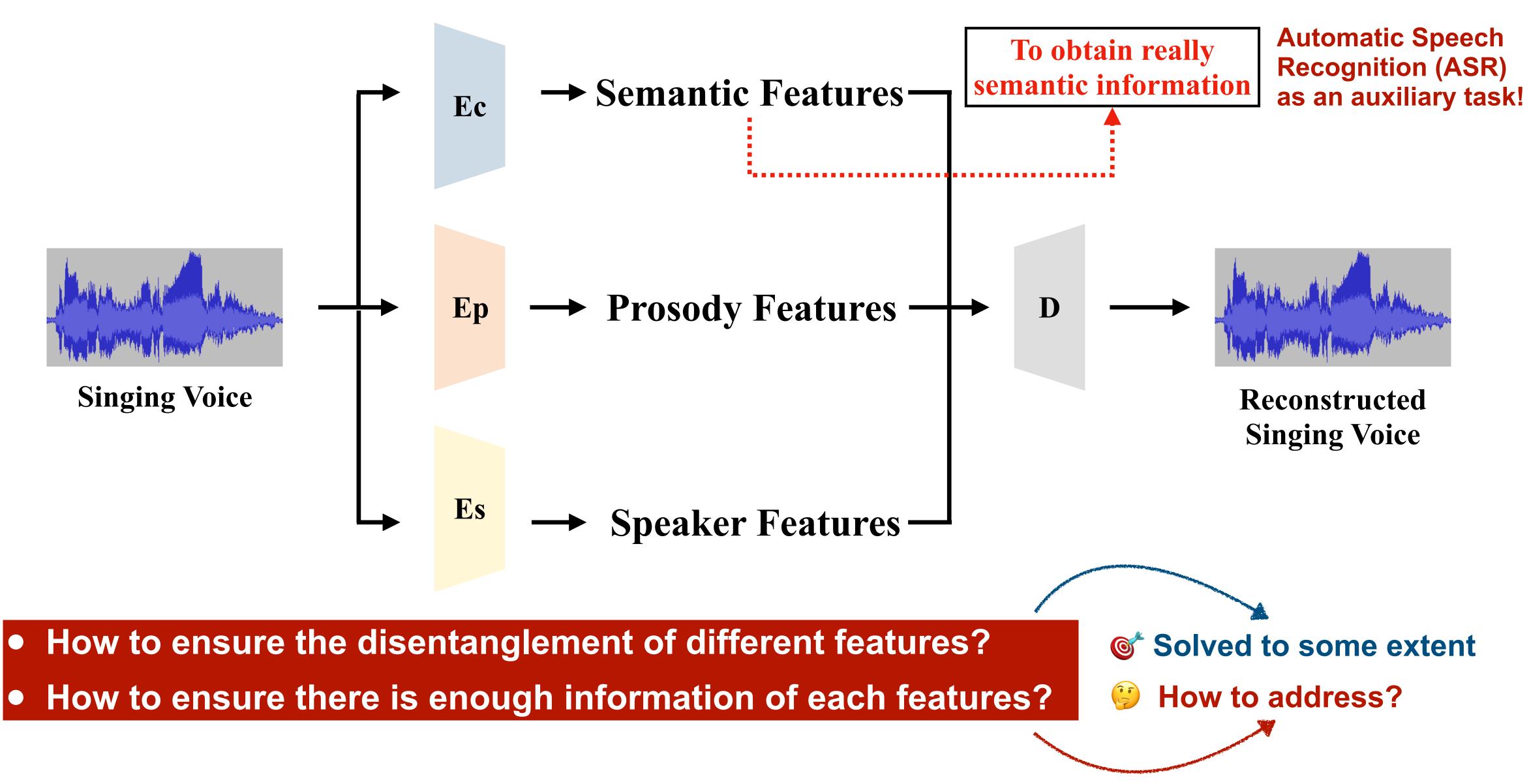
AutoVC: "To carefully design the dimension of the semantic features"

Auto-Encoder SVC: The Early Researches

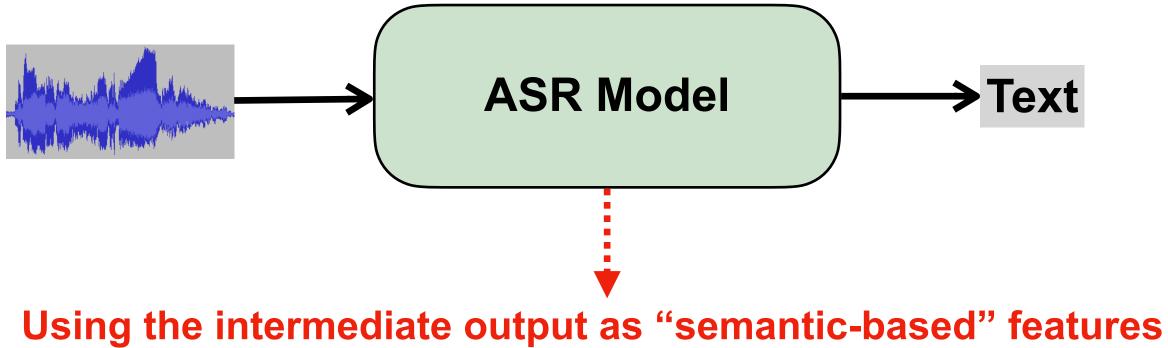




(Review) Non-Parallel SVC: Auto-Encoder School



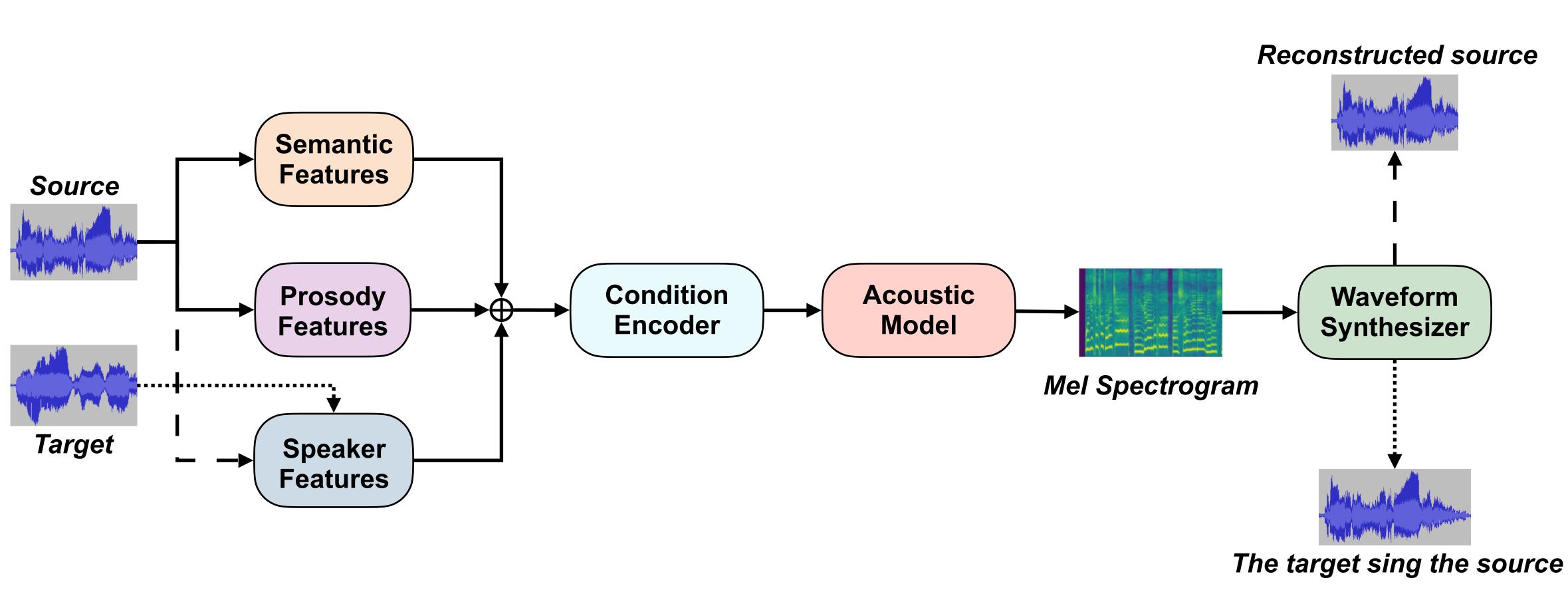
Non-Parallel VC/SVC — a.k.a Recognition & Synthesis VC/SVC



Why do we use the continuous semantic features instead of the symbolic text?

- There are errors for the recognized symbolic text. (1)
- It takes more time to obtain the symbolic text than just extracting dense features. 2
- There are more acoustic information (such as pronunciation) in the dense features, which is better 3 for improving the intelligibility of the synthesized voice.

Modern Singing Voice Conversion Pipeline



Roadmap

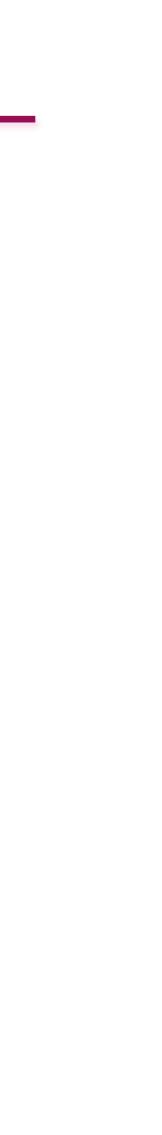
- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization 0
- Singing Voice Conversion: Next Steps

• Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for

Amphion SVC: Supported Model Architectures

- Semantic Features Extractor
 - WeNet, Whisper, ContentVec, HuBERT
 - Joint Usage of Diverse Semantic Features Extractors
- Prosody Features
 - F0 and energy
- Speaker Features
 - One-hot Speaker ID
 - Features of Pretrained SV model

- Acoustic Model
 - Diffusion-based
 - Transformer-based
 - VAE- and Flow-based
- Waveform Synthesizer
 - GAN-based
 - Diffusion-based

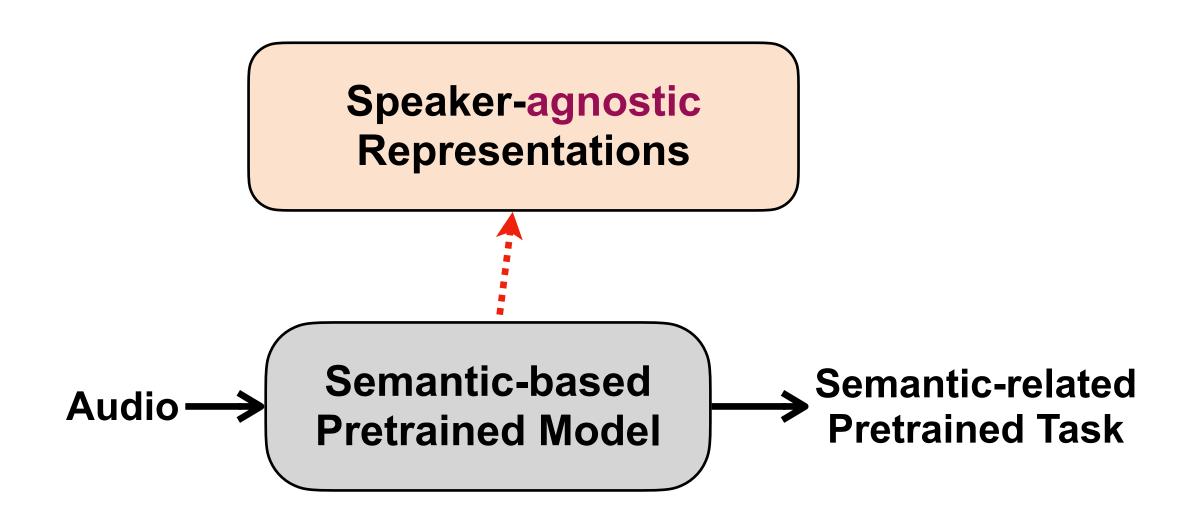


The Importance of Semantic-based Pretrained Models

Speaker-specific Representations

Can be:

- One-hot speaker ID
- Embeddings from speaker verification models
- Mel spectrogram



Semantic-related pretrained tasks:

- Automatic Speech Recognition (ASR)
- Semantic-guided self-supervised learning (eg: HuBERT)

Requirements for Speaker-agnostic Representations

Requirements of SVC	Cap
To model melody	V
To model lyrics	Could
To model auxiliary acoustic information	(sp
To be robust for in-the-wild acoustic environment	Wr

pability of the Semantic-based Features

Nhether could or not remains unknown

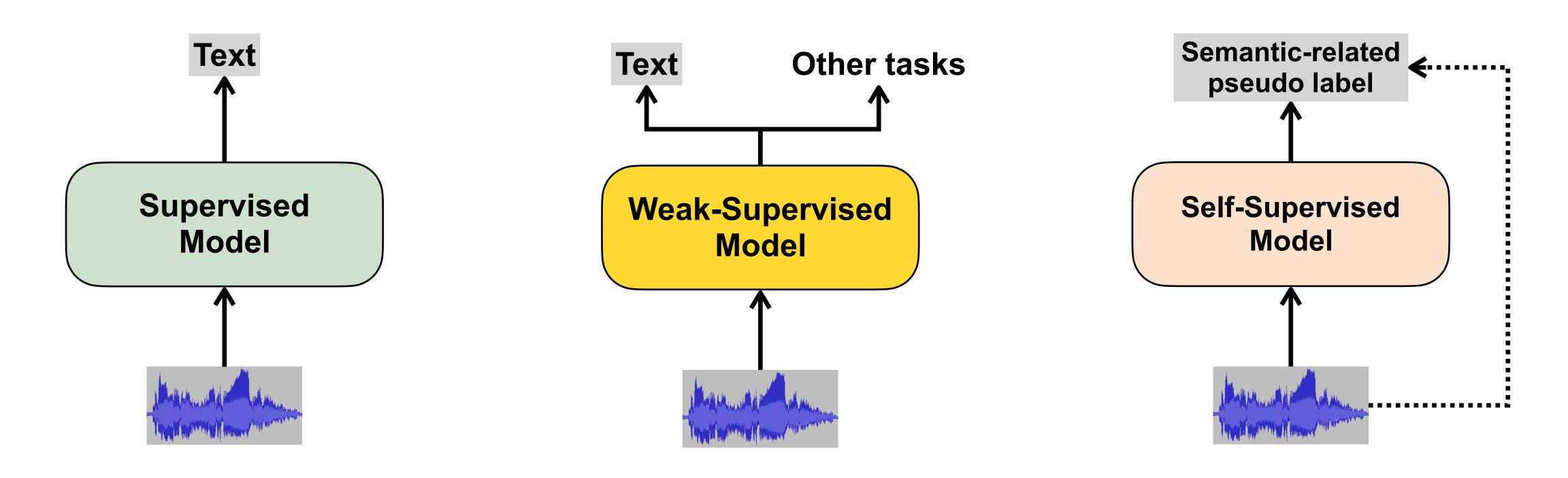
d. But exactly how much remains unknown

Could. But whether the information is eaker-agnostic or not remains unknown

hether is robust or not remains unknown



Analysis: Three Schools of Semantic-based Pretraining



Supervised Model (eg: WeNet)

Weak-Supervised Model (eg: Whisper)

10k hours of speech, English or Chinese 680k hours, multilingual and multi-task **Self-Supervised Model** (eg: HuBERT / ContentVec)

> 1k hours of speech, English

Experiments: Using Only Semantic-based Features for SVC

Training



- Speaker-agnostic representations
 - WeNet / Whisper / ContentVec 0
 - Output of the top layer of encoder 0

Speaker-specific representations

- One-hot speaker ID
- Mel-spectrogram

• Decoder

- Diffusion (WaveNet), DDPM (1000 steps)
- Training Data (Decoder)
 - Studio Recording: 83.1 hours of speech, 128.3 hours of singing voice
 - In the wild: 6.4 hours of source separated singing voice

Results: Using Only Semantic-based Features for SVC

MCD (↓)	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)
0.000	1.000	0.0	12.9%	1.000
10.324	0.203	423.4	38.2%	0.912
8.229	0.524	297.3	18.9%	0.914
8.972	0.491	361.0	22.1%	0.918
	0.000 10.324 8.229	0.000 1.000 10.324 0.203 8.229 0.524	0.000 1.000 0.0 10.324 0.203 423.4 8.229 0.524 297.3	0.000 1.000 0.0 12.9% 10.324 0.203 423.4 38.2% 8.229 0.524 297.3 18.9%

 $(\mathbf{1})$ **To model melody:**

> Whisper > ContentVec > WeNet, but all of them are not enough

 $(\mathbf{2})$ **To model lyrics:**

Whisper > ContentVec > WeNet

 $(\mathbf{3})$ To be speaker-agnostic:

When using speaker ID, all of the three are good.

On studio recording eval-set

- **Compared with the classic supervised** * model, weak-supervised and selfsupervised models is more robust for singing voice
- Large-scale pretraining corpus is * necessary

Results: Complementary roles of Diverse Semantic-based Features

Semantic-based Features	MCD (\downarrow)	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)
Ground Truth	0.000	1.000	0.0	12.9%	1.000
WeNet	10.324	0.203	423.4	38.2%	0.912
Whisper	8.229	0.524	297.3	18.9%	0.914
ContentVec	8.972	0.491	361.0	22.1%	0.918
WeNet + Whisper	8.345	0.540	284.2	16.8%	0.911
WeNet + ContentVec	8.870	0.525	329.5	19.9%	0.912
Whisper + ContentVec	8.201	0.548	279.6	16.9%	0.912
WeNet + Whisper + ContentVec	8.249	2 0.572	278.5	16.1%	0.913

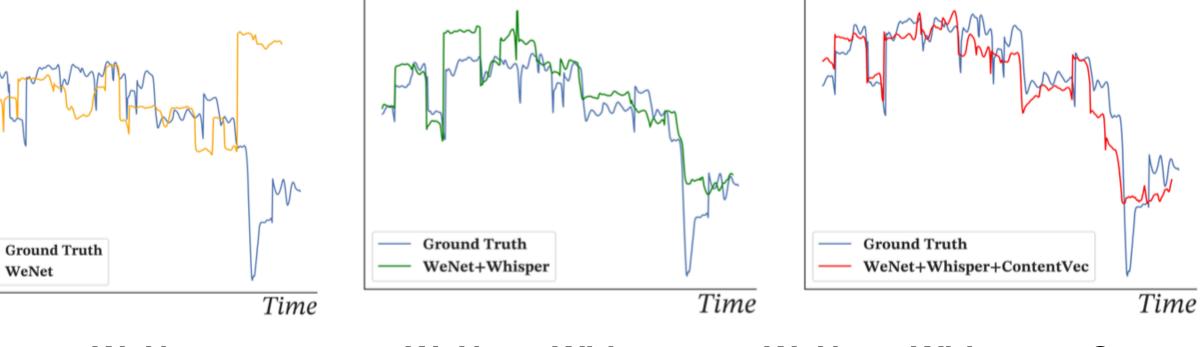
Using diverse semantic-based features:

- Most results are promoted stage by stage (1)
- Introducing explicit melody modeling for (2)SVC remains necessary

Reference

Source

On studio recording eval-set

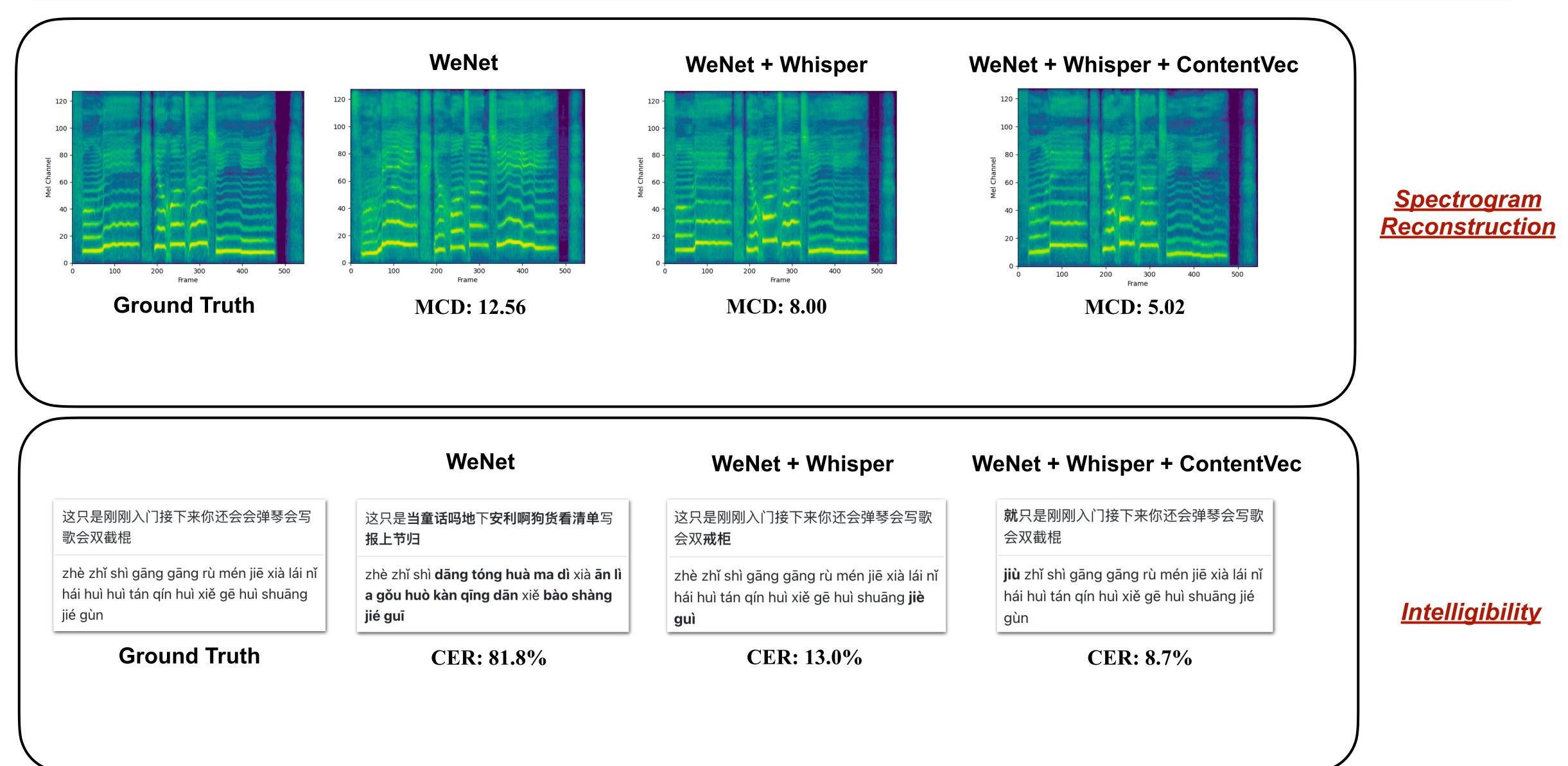


WeNet

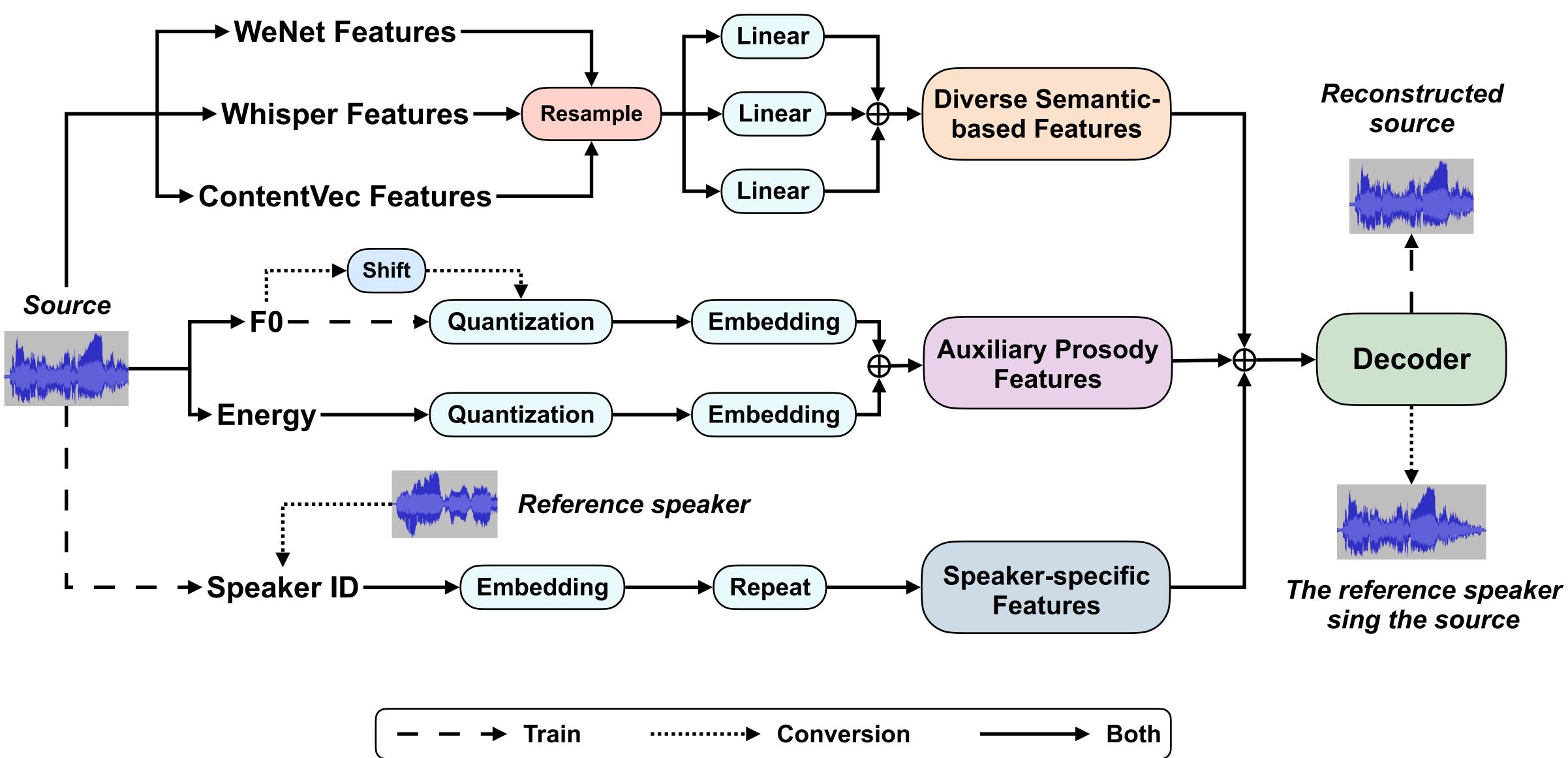
WeNet + Whisper

WeNet + Whisper + ContentVec

Results: Complementary roles of Diverse Semantic-based Features



SVC Framework based on Diverse Semantic-based Features Fusion



Results: Recording studio data v.s. In-the-wild data

	Semantic-based Features
Subjective	
Evaluation	WeNet
	WeNet + Whisper
	WeNet + Whisper + ContentVec

1 Robustness:

- Compared with the recording studio setting, all the models get worse in the more challenging for in-the-wild evaluation set.
- Leveraging diverse semantic-based features are effective both on the two settings.

Recording St	udio Setting	In-the-Wil	d Setting
Naturalness (†)	Similarity (†)	Naturalness (†)	Similarity (†)
$2.72 \pm 0.22 \\ 4.02 \pm 0.18 \\ 4.14 \pm 0.19$	2.64 ± 0.21 3.13 ± 0.17 3.25 ± 0.18	2.85 ± 0.21 3.70 ± 0.18 3.71 ± 0.18	$2.34 \pm 0.20 \\ 2.86 \pm 0.23 \\ 2.82 \pm 0.23$

The full scores of Naturalness and Similarity are 5 and 4

Results: The effect of introducing F0 and Energy

Recording Studio Setting, Using only semanticbased features

Semantic-based Features

Ground Truth

WeNet Whisper ContentVec

Semantic-based Features	R	Recording Studio Setting				In-the-Wild Setting			
	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (\uparrow)	
WeNet WeNet + Whisper	0.936 0.943	55.5 49.5	15.8% 15.2%	0.875 0.884	0.901 0.921	87.8 73.6	60.8% 21.1%	0.855 0.865	
WeNet + Whisper + ContentVec	0.940	55.2 (2)	15.7%	0.884	3 0.919	79.9	23.3%	0.867	

- **To model melody**: Introducing F0 and Energy improves a lot (1)
- (2) **To model lyrics**: Introducing F0 and Energy also helps for CER
- (3) To be speaker-agnostic: However, introducing F0 and Energy harms

the speaker similarity.

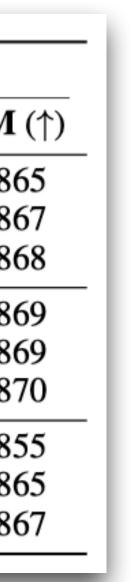
MCD (↓)	FOCORR (†)	FORMSE (\downarrow)	CER (↓)	SIM (†)
0.000	1.000	0.0	12.9%	1.000
10.324	0.203	423.4	38.2%	0.912
8.229	0.524	297.3	18.9%	0.914
8.972	0.491	361.0	22.1%	0.918

Using both semantic-based and prosody (F0 and Energy) features

Results: For more generative models

Base Model	Semantic-based Features	Recording Studio Setting					In-the-Wild Se	tting	
Dust mouth	Semantie Subeu I cutures	FOCORR (†)	FORMSE (\downarrow)	$\operatorname{CER}\left(\downarrow\right)$	SIM (†)	FOCORR (†)	FORMSE (\downarrow)	$\operatorname{CER}\left(\downarrow\right)$	SIM (
	WeNet	0.849	149.3	15.6%	0.878	0.871	210.0	40.0%	0.86
TransformerSVC	WeNet + Whisper	0.924	77.2	14.9%	0.881	0.848	183.8	18.7%	0.86
	WeNet + Whisper + ContentVec	0.931	75.5	16.2%	0.883	0.857	186.7	23.3%	0.86
	WeNet	0.937	175.3	19.1%	0.890	0.919	91.3	57.7%	0.86
VitsSVC	WeNet + Whisper	0.945	144.4	17.8%	0.890	0.920	86.9	35.2%	0.86
	WeNet + Whisper + ContentVec	0.946	112.9	17.7%	0.886	0.921	79.5	32.3%	0.870
	WeNet	0.936	55.5	15.8%	0.875	0.901	87.8	60.8%	0.85
DiffWaveNetSVC	WeNet + Whisper	0.943	49.5	15.2%	0.884	0.921	73.6	21.1%	0.86
	WeNet + Whisper + ContentVec	0.940	55.2	15.7%	0.884	0.919	73.6 79.9 2	23.3%	0.86

(1) **Generalization:** The idea of diverse semantic-based features fusion work for various base models in both settings. 2 **Robustness:** for the more challenging in-the-wild setting, Whisper is more robust than ContentVec. This might be contributed by its size and diversity of the training data.



Conclusions

Requirements of SVC	Ca
To model melody	
To model lyrics	Th
To model auxiliary (and speaker-agnostic)	When us
acoustic information	(Howeve
To be robust for in-the-wild acoustic environment	Th

pability of the Semantic-based Features

Almost could not

ne pretraining data effects the robustness

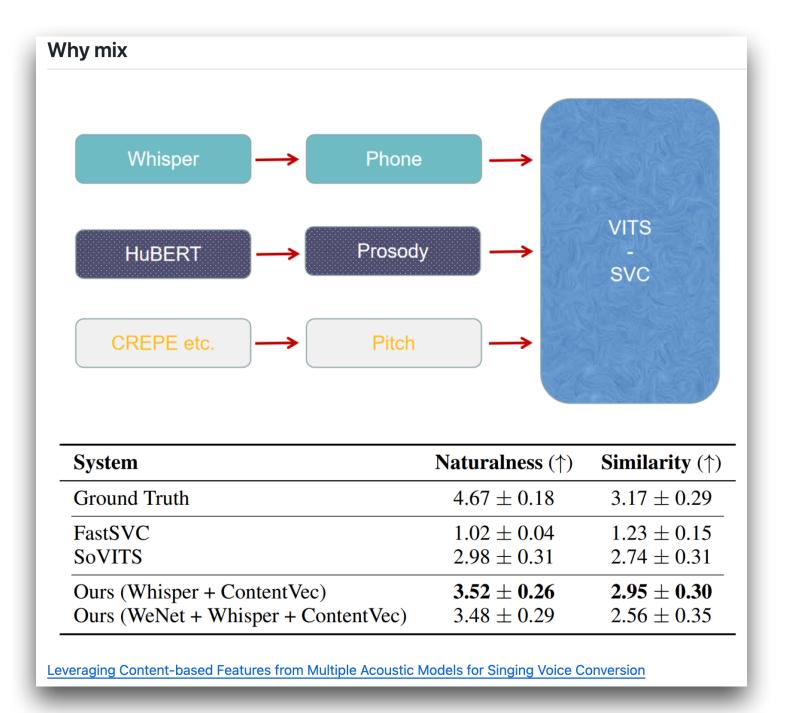
sing speaker ID, the information "seems" to be speaker-agnostic.

er, there is timbre leakage issue especially for zero-shot setting.)

ne pretraining data effects the robustness

AI Singer Demo and Impact

Make Taylor Swift sing Mandarin song!



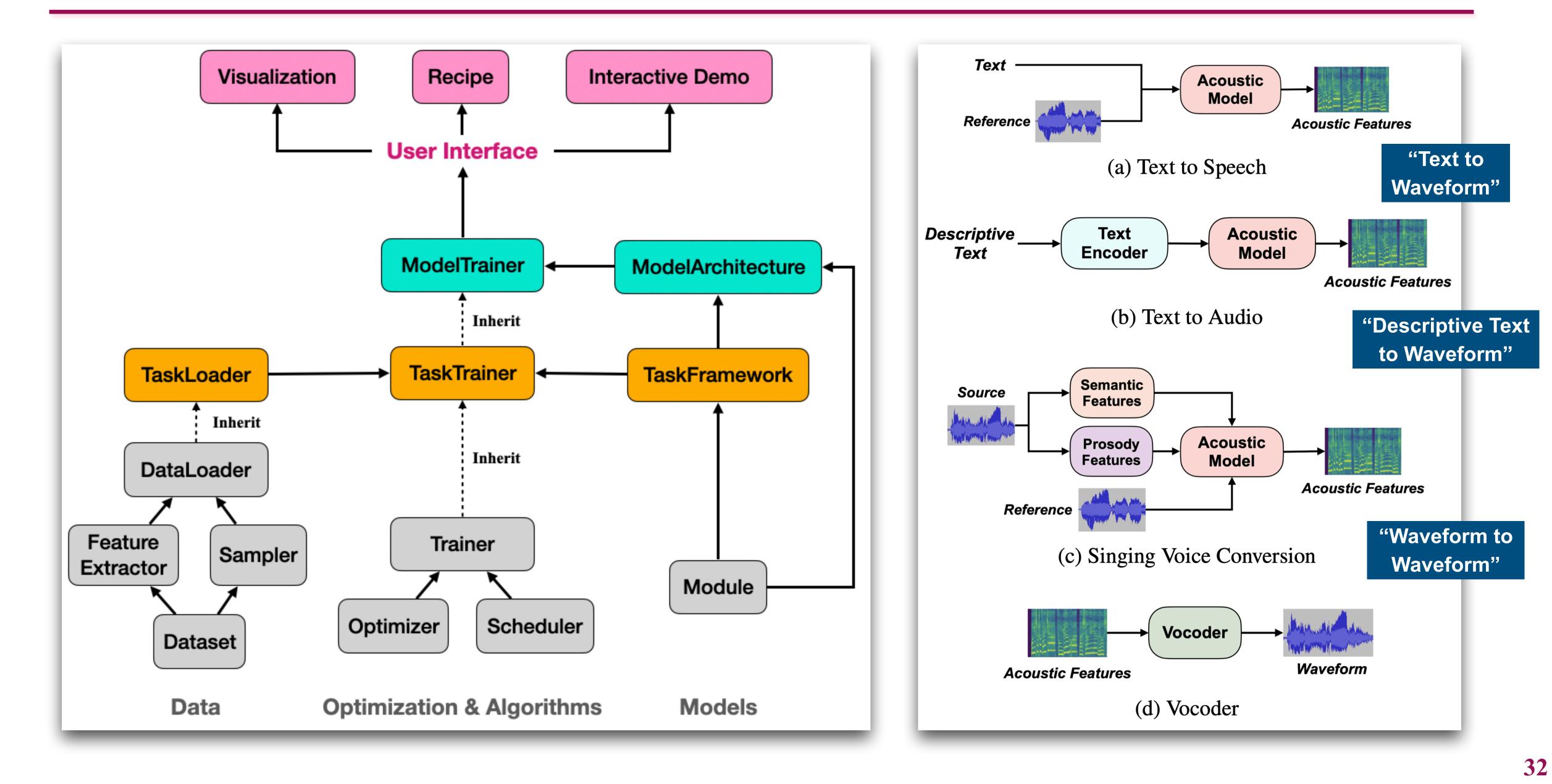
• Our idea of using multiple content features has been borrowed and integrated into <u>So-</u> VITS-SVC 5.0 (Github over 2.7k stars)

Roadmap

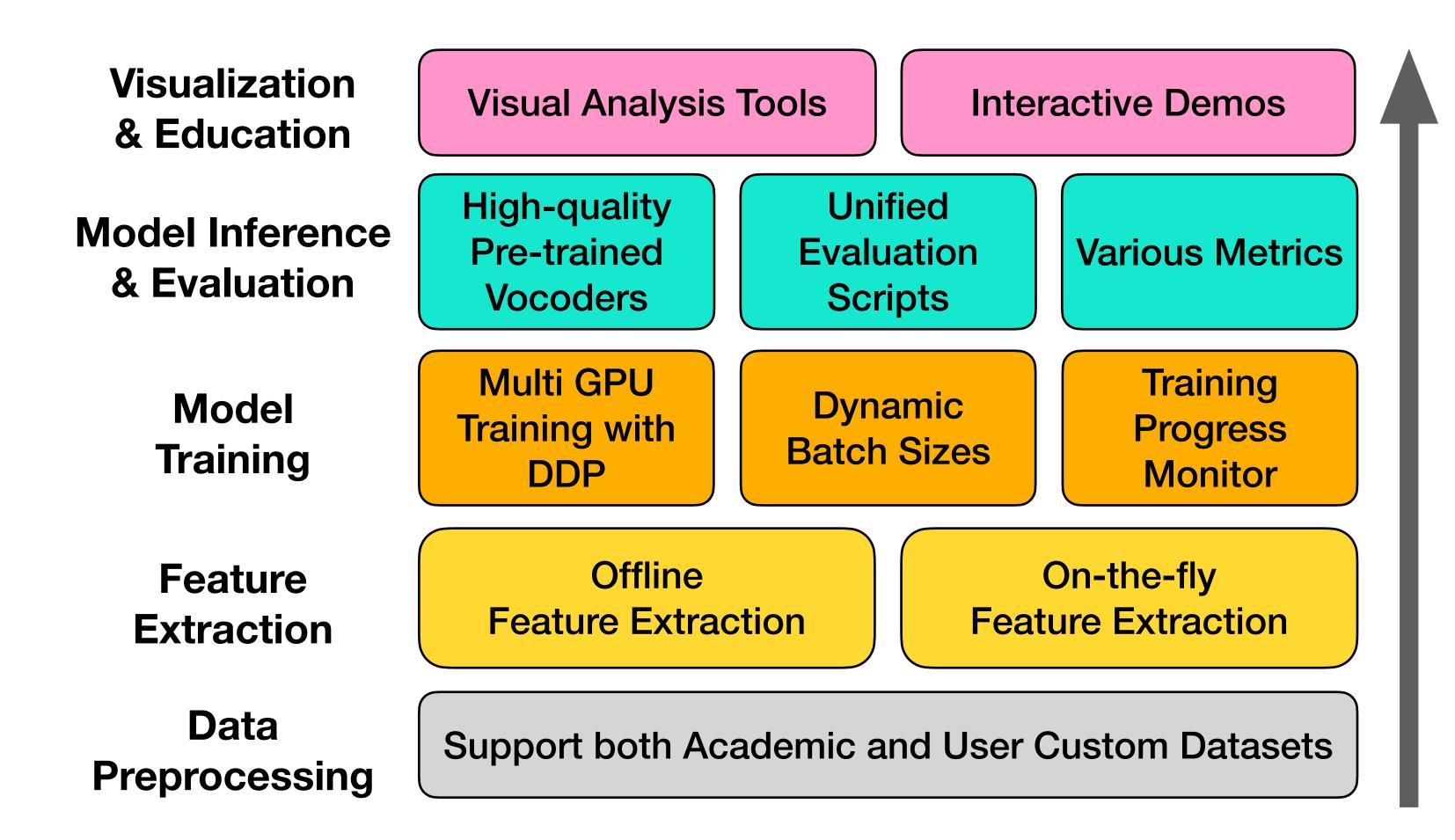
- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - 0 Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization
- Singing Voice Conversion: Next Steps

Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for

Strength1: Unified Audio Generation Framework



Strength2: Beginner-friendly End-to-End Workflow



One-stop research platform suitable for both novices and experienced researchers

Strength3: Open Pre-trained Models

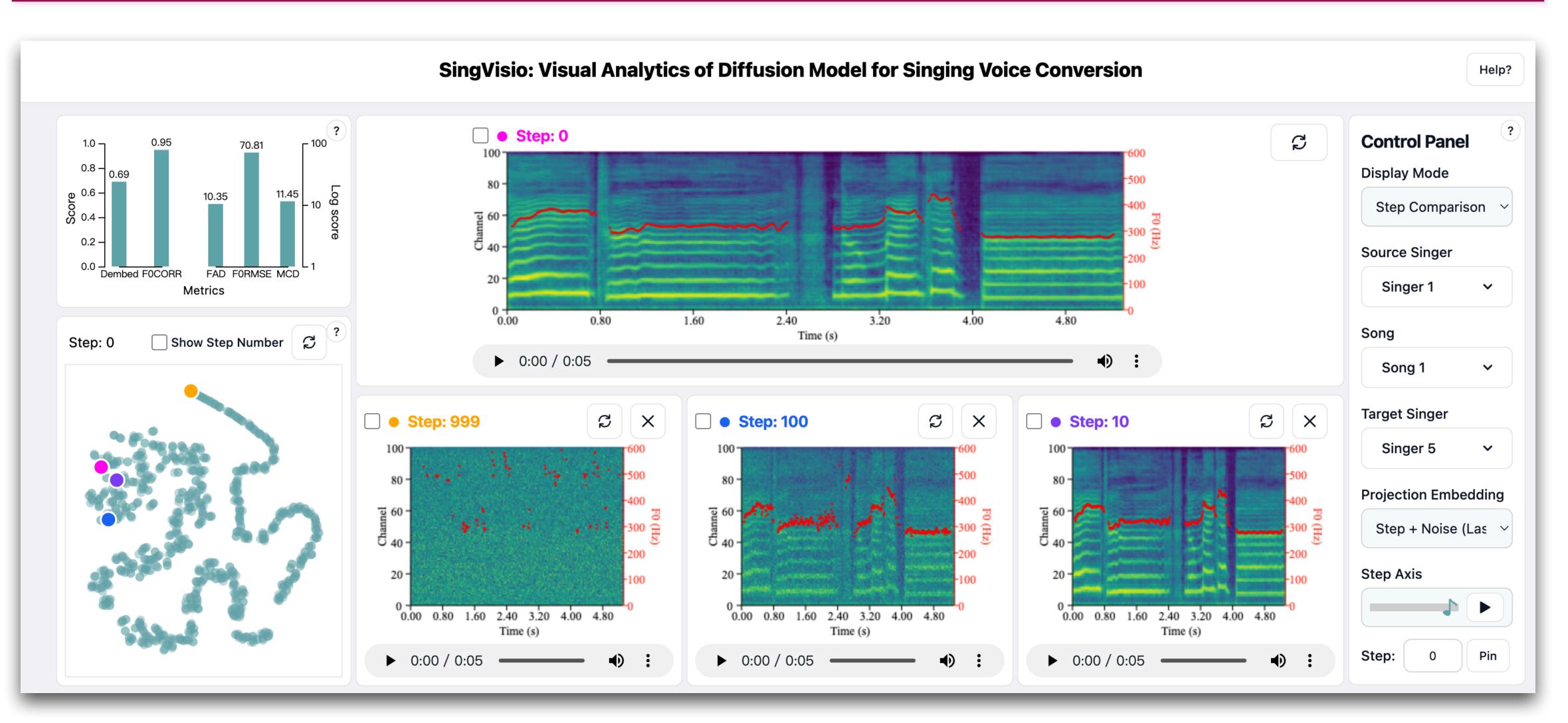
Release Criteria	Description
Model Metadata	Detail the model architecture and the numb parameters.
Training Datasets	List all the training corpus and their sources
Training Configuration	Detail the training hyberparameters (like ba learning rate, and number of training steps) computational platform
Evaluation Results	Display the evaluation results and the perform comparison to other typical baselines.
Usage Instructions	Instruct how to inference and fine-tune bas pre-trained model.
Interactive Demo	Provide an online interactive demo for user explore.
License	Clear the licensing details including how the can be utilized, shared, and modified.
Ethical Considerations	Address ethical considerations related to thapplication, focusing on privacy, consent, a encourage responsible usage.

ber of S. atch size,) and the formance sed on the rs to he model the model's and bias, to

Updated 2	on/vits_ljspeech laysago	
amphi Updated 2	on/hifigan_ljspeech lays ago	
💀 amphi Updated Ja	on/valle_librilight_6k n24	
💀 amphi Updated De	on/diffwave cc21,2023	
-	on/hifigan_speech_bigd c 21,2023 • ♡ 3	ata
-	on/naturalspeech2_libr c 19,2023 • ♡ 5	itts
•• amphi Updated 2 d	on/fastspeech2_ljspeec lays ago	h
₩ amphi Updated 3 d	on/vits_hifitts lays ago	
💀 amphi Updated Ja	on/valle_libritts n11 • ♡ 2	
	on/BigVGAN_singing_big c21,2023 • ♡ 1	data
	on/singing_voice_conve c21,2023 • ♡ 14	rsion

Supported **Pretrained Models** (Updating)

Strength4: Visualization and Interactivity



Analytics of Diffusion Model for Singing Voice Conversion. Computers & Graphics.

Liumeng Xue*, Chaoren Wang*, Mingxuan Wang, Xueyao Zhang, Jun Han, Zhizheng Wu. SingVisio: Visual

Roadmap

- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - 0 Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization 0
- Singing Voice Conversion: Next Steps

Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for



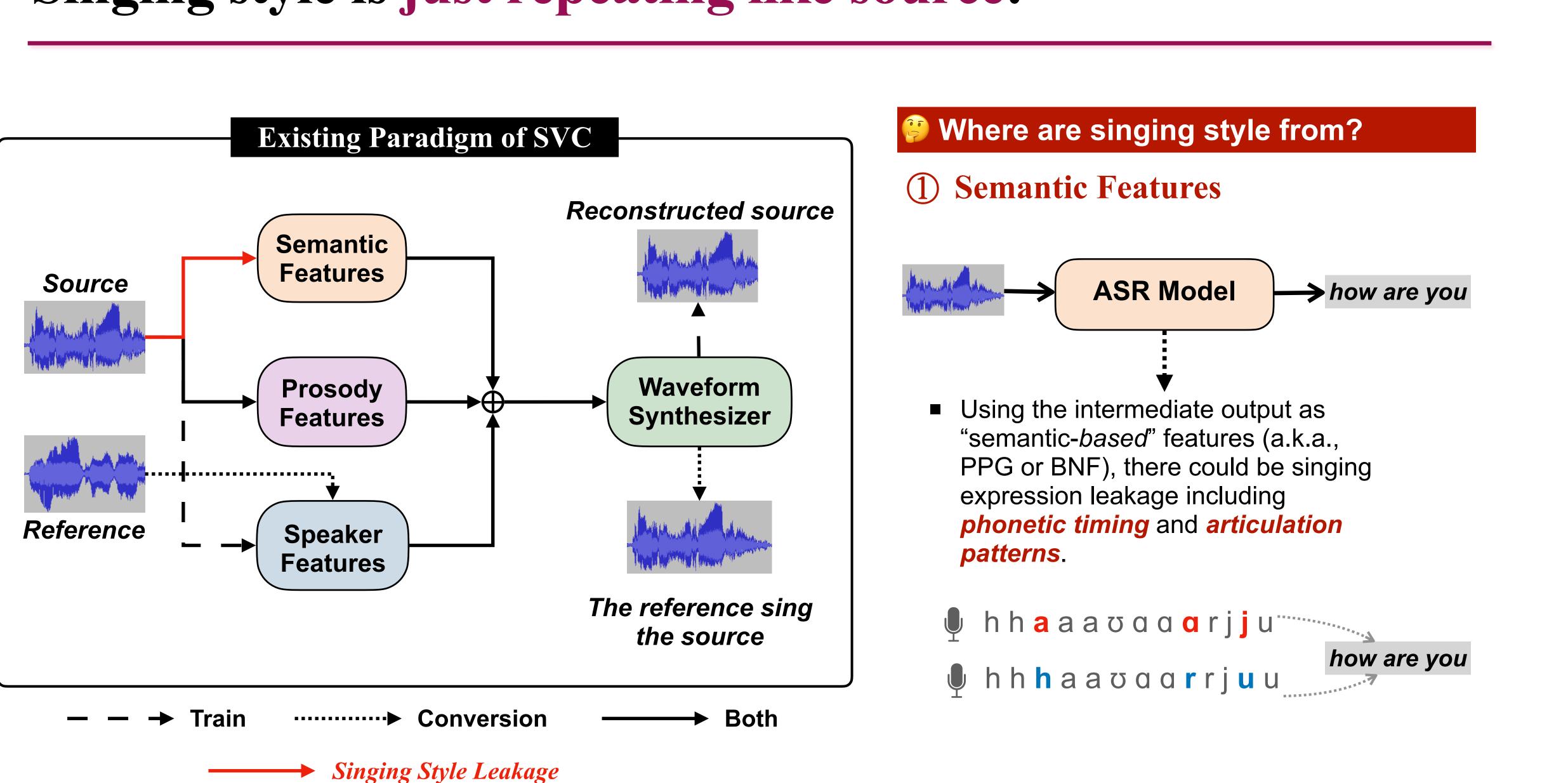
Challenges: To Clone *Singing Style* **Beyond Timbre**

	Source	Conversion Results ^[1]	Ground Truth
韩红 to 李健			
齐秦 to 李健			
张学友 to 李健			-
林志炫 to 李健			-
陶喆 to 李健			-

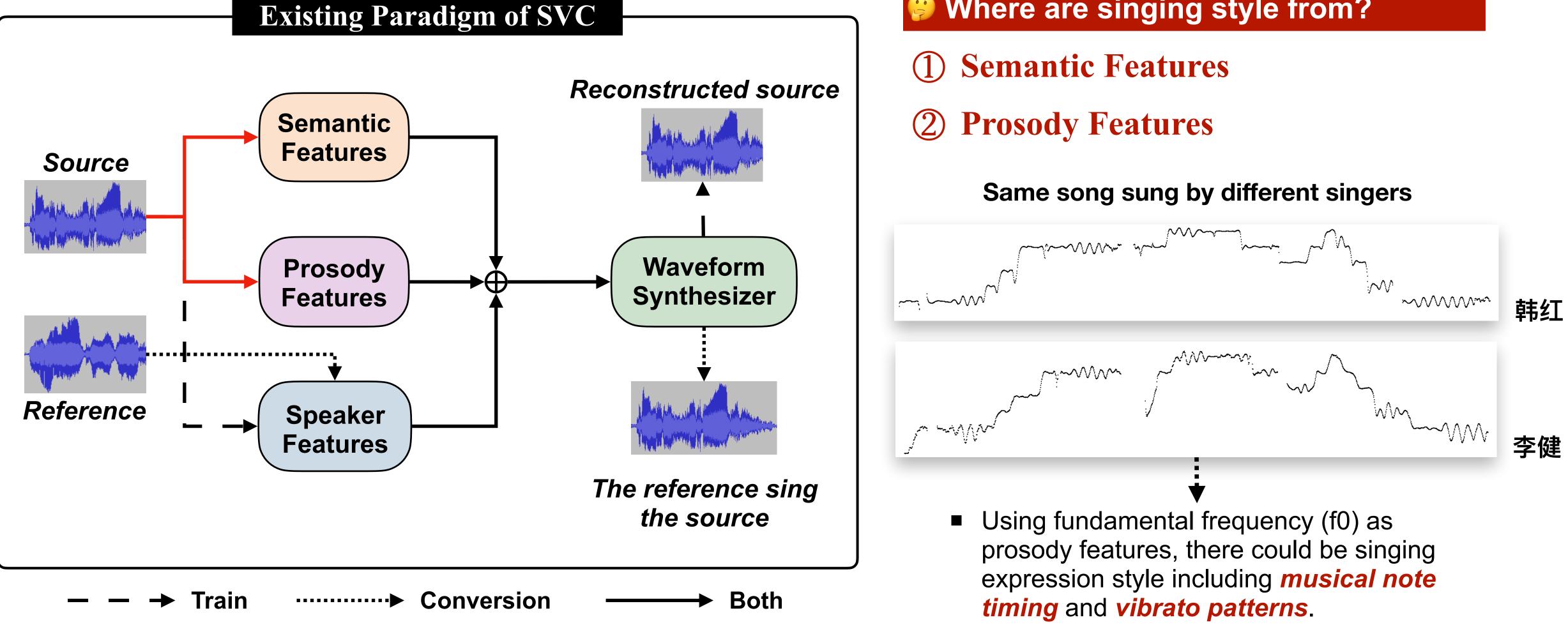
[1] Xueyao Zhang, et al. Leveraging Diverse Semantic-based Audio Pretrained Models for Singing Voice Conversion. IEEE SLT 2024.

Timbre (音色) has been cloned, but the imitation of singing style (唱法) still has a long way to go.

Singing style is just repeating like source!



Singing style is just repeating like source!



Singing Style Leakage

Where are singing style from?

THANKS

Xueyao Zhang (张雪遥)

- School of Data Science, CUHK-Shenzhen
- Amphion v0.1's co-founder
- - Singing Voice Processing
 - Music Generation

Amphion Technical Report: https://arxiv.org/abs/2312.09911 Amphion GitHub: https://github.com/open-mmlab/Amphion

Third-year PhD student, Supervised by Prof Zhizheng Wu Homepage: <u>https://www.zhangxueyao.com/</u>

Project: <u>https://github.com/open-mmlab/Amphion</u> (7.8k stars)

Research interest: "AI + Music", especially on:

Amphion Official Account

