

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

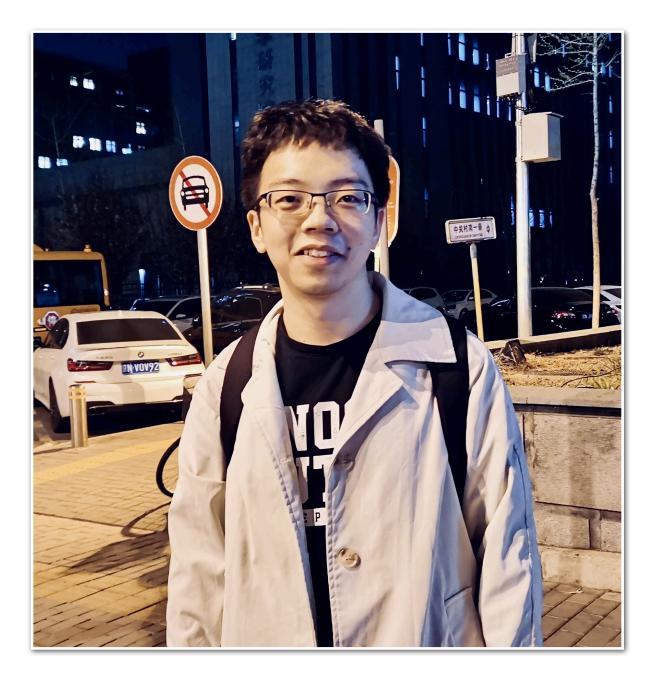
A Comprehensive Guide to Amphion's Singing Voice Conversion

The Chinese University of Hong Kong, Shenzhen

Xueyao Zhang

2024/02

About me



Xueyao Zhang (张雪遥)

- Amphion v0.1's co-founder
- - Singing Voice Processing
 - Music Generation

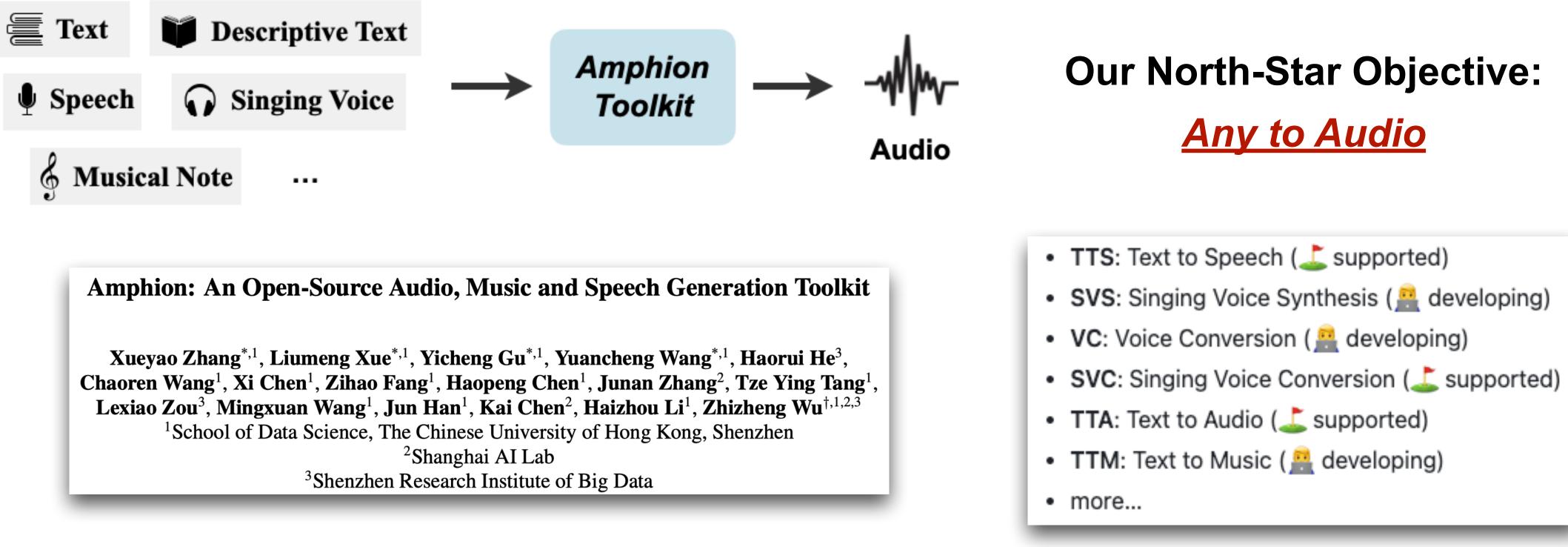
Amphion Technical Report: https://arxiv.org/abs/2312.09911 Amphion GitHub: https://github.com/open-mmlab/Amphion

✦ Second-year PhD student, Supervised by Prof Zhizheng Wu School of Data Science, CUHK-Shenzhen Homepage: <u>https://www.zhangxueyao.com/</u>

Project: <u>https://github.com/open-mmlab/Amphion</u> (3.5k stars)

Research interest: "AI + Music", especially on:

About Amphion



Support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.

<u>Amphion + Sora</u>

Roadmap

- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - 0 Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization

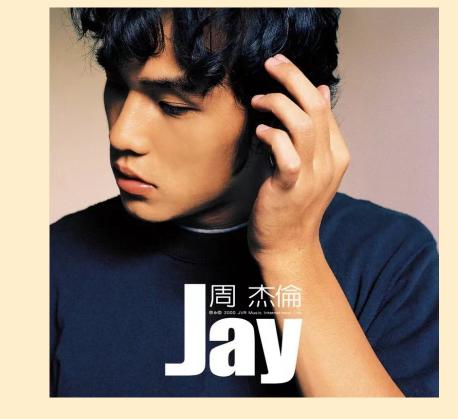
Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for

What is Singing Voice Conversion (SVC)?

Professional Singer1

Professional Singer2

Amateur Singer



Professional Singer

Inter-singer Conversion

Speaker

Singer

Cross-domain Conversion

Intra-singer Conversion

Parallel Singing Voice Conversion

X

Professional Singer1

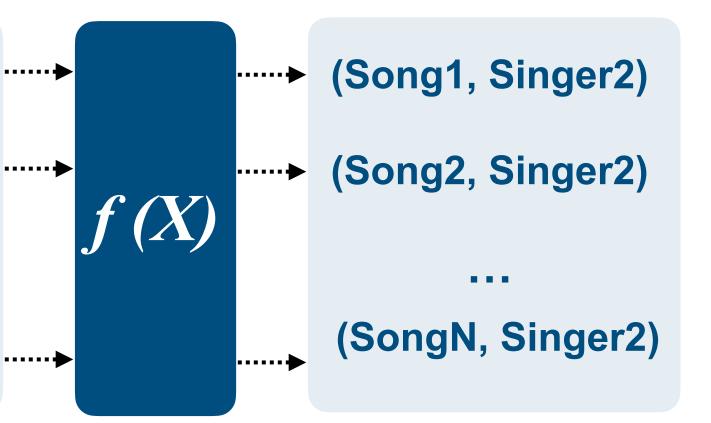
(Song1, Singer1)

(Song2, Singer1)

(SongN, Singer1)

Professional Singer2

Y



Parallel corpus is hard to collect!

Non-Parallel Singing Voice Conversion

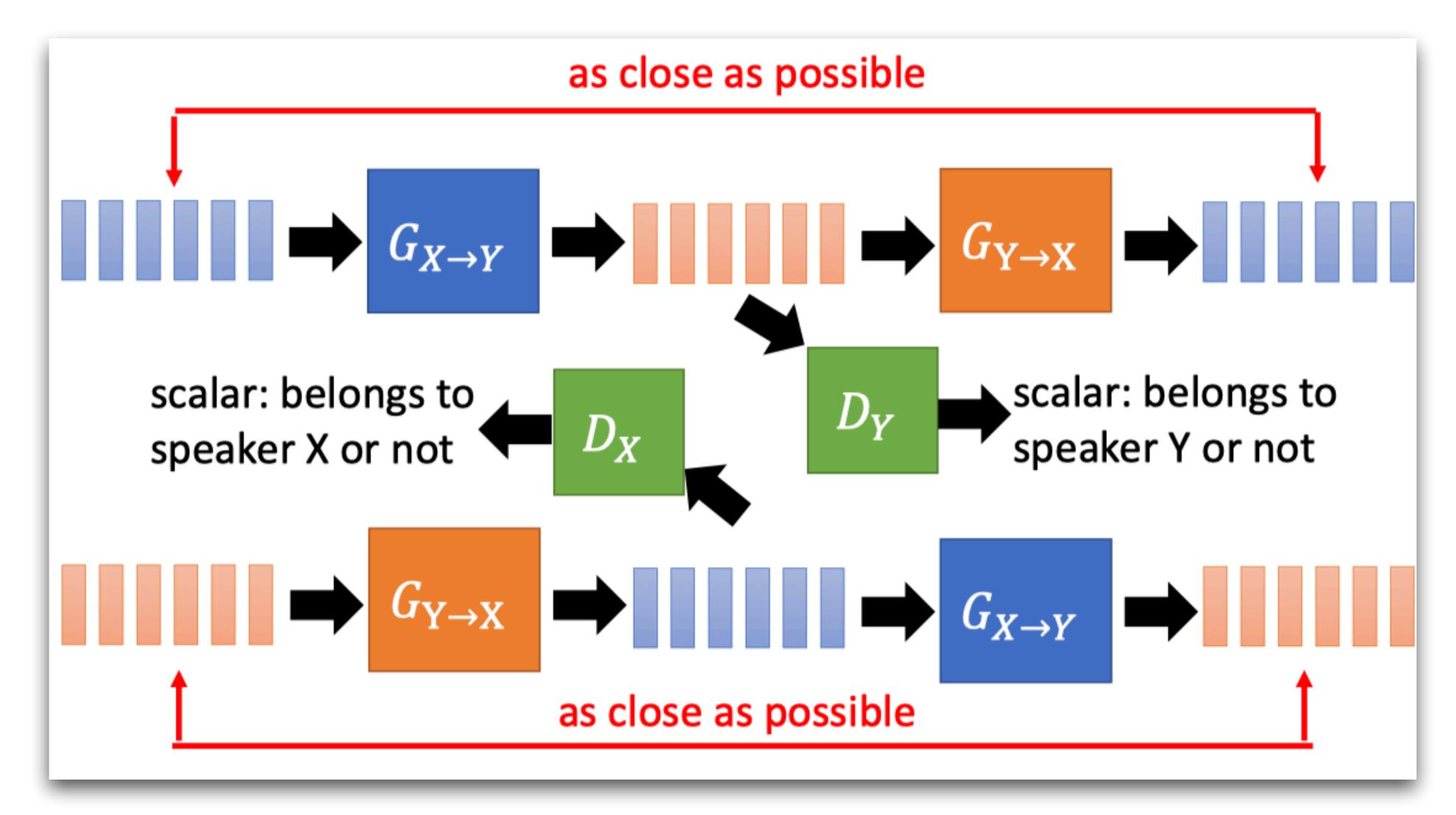
Professional Singer1

Professional Singer2

Singer2's Songs

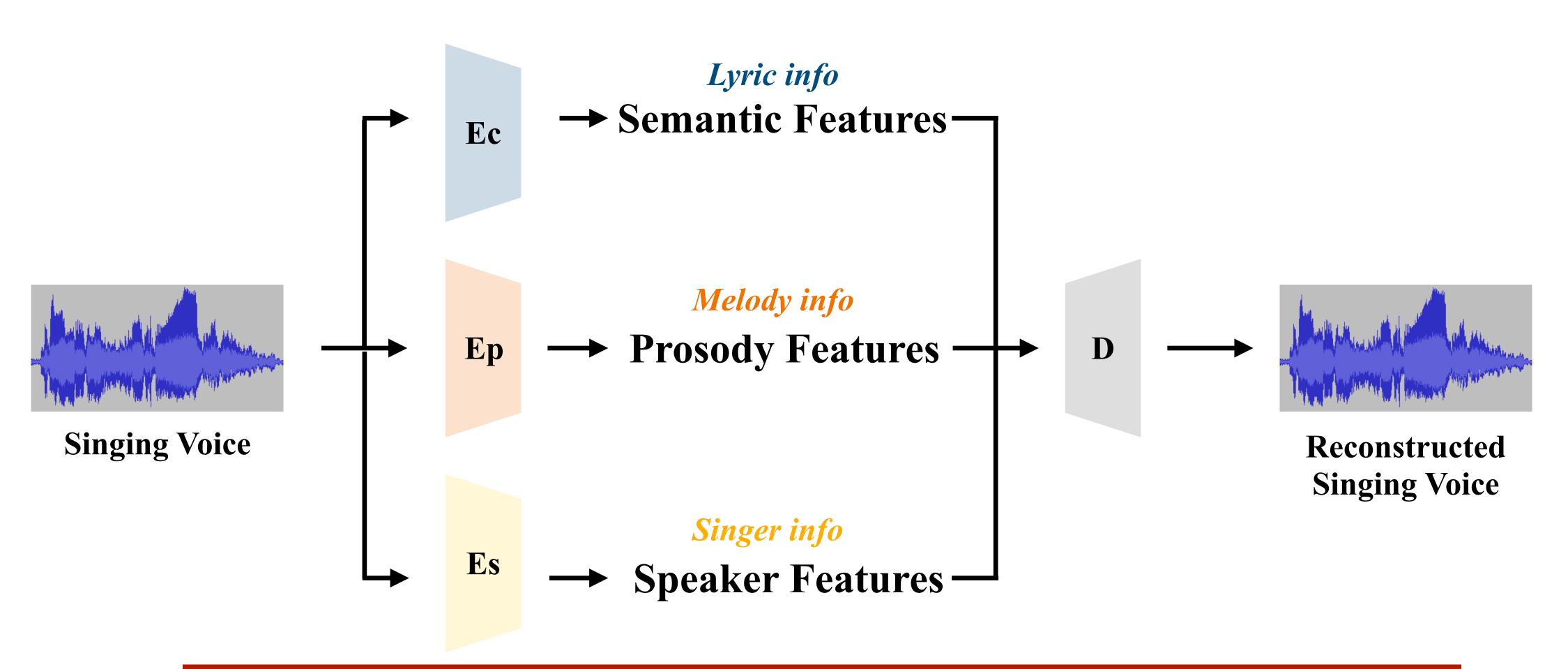
How to decouple the singer identity?

Non-Parallel SVC: GAN School



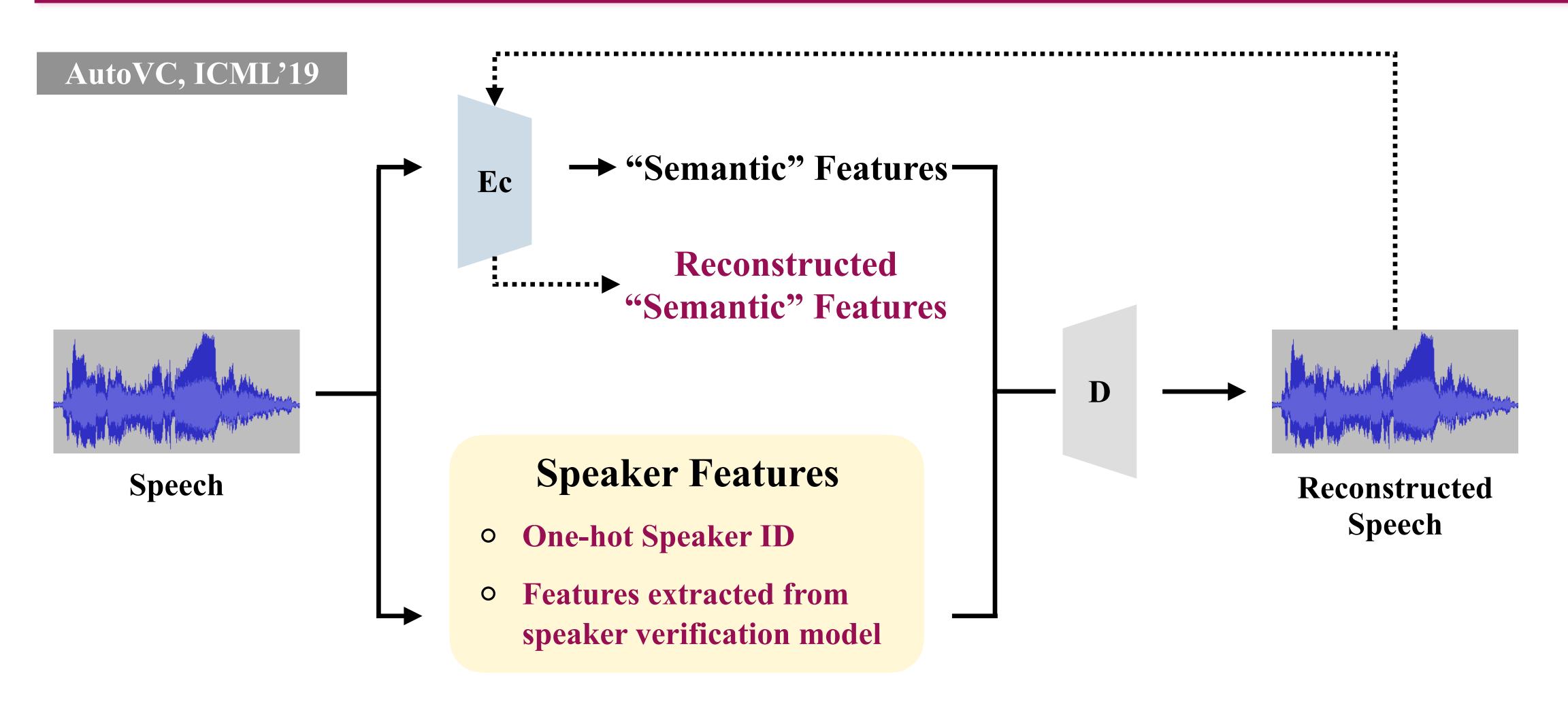
Credit: Voice Conversion, Hung-yi Lee.

Non-Parallel SVC: Auto-Encoder School



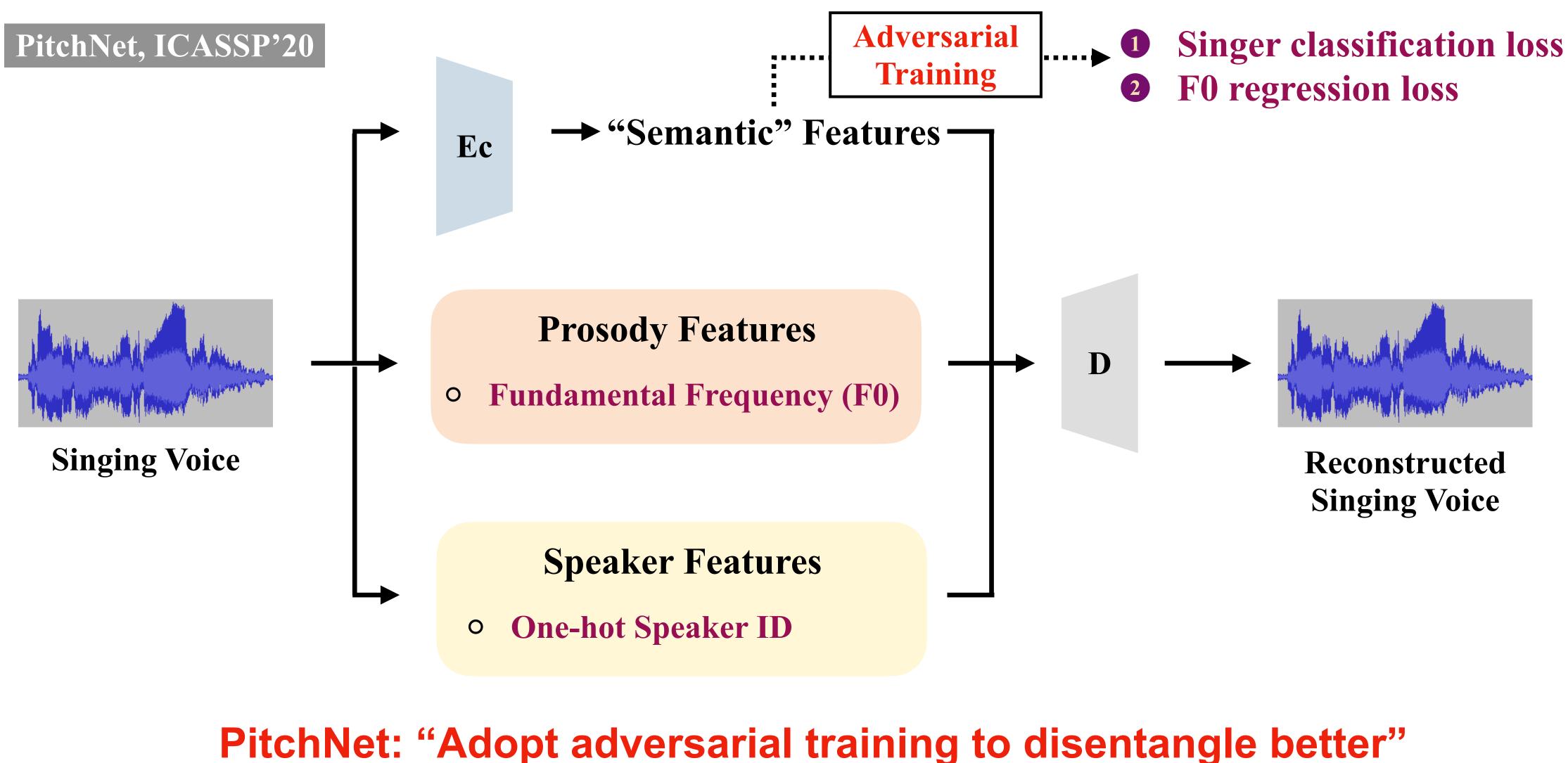
How to ensure the disentanglement of different features? • How to ensure there is enough information of each features?

Auto-Encoder VC: The Early Researches

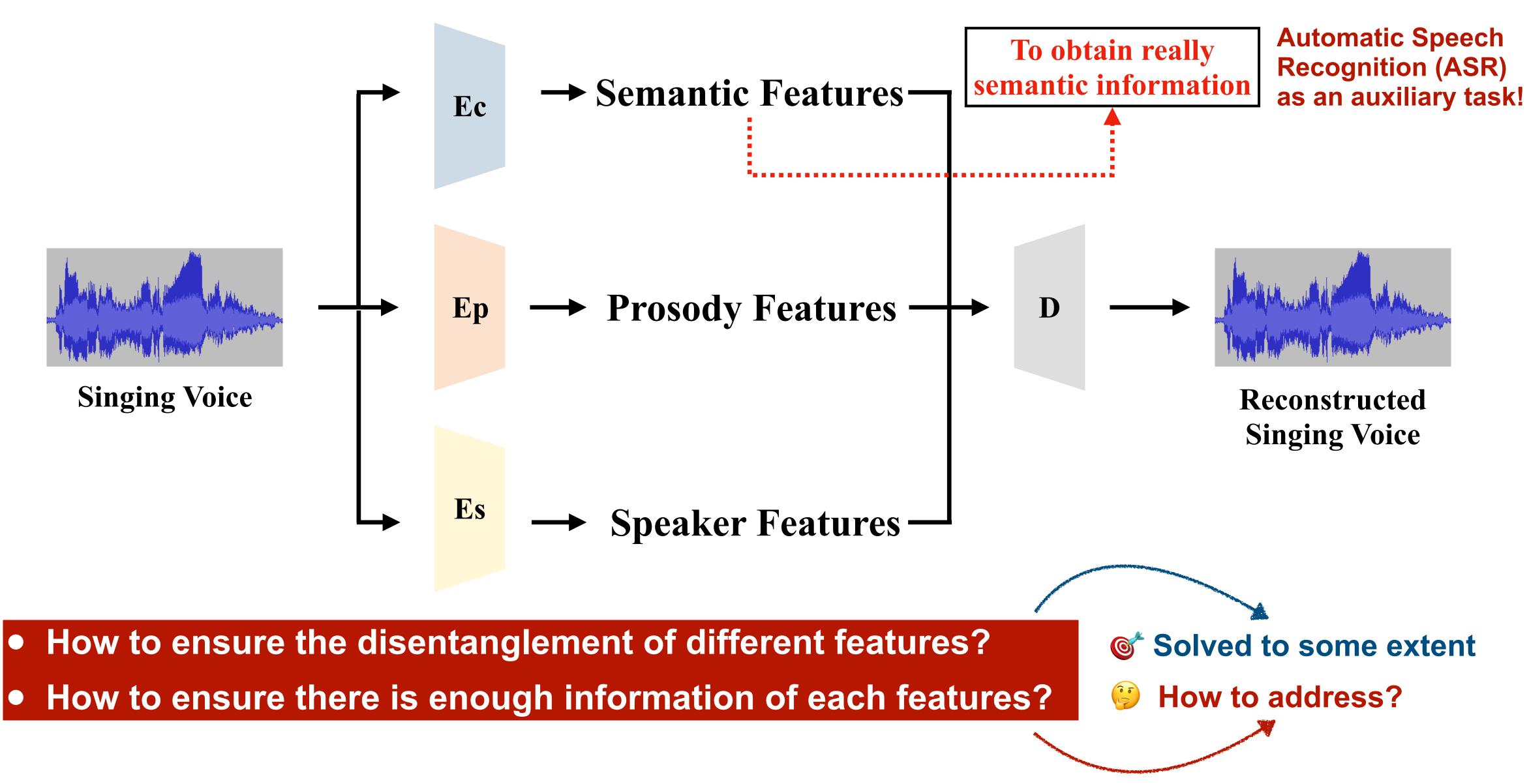


AutoVC: "To carefully design the dimension of the semantic features"

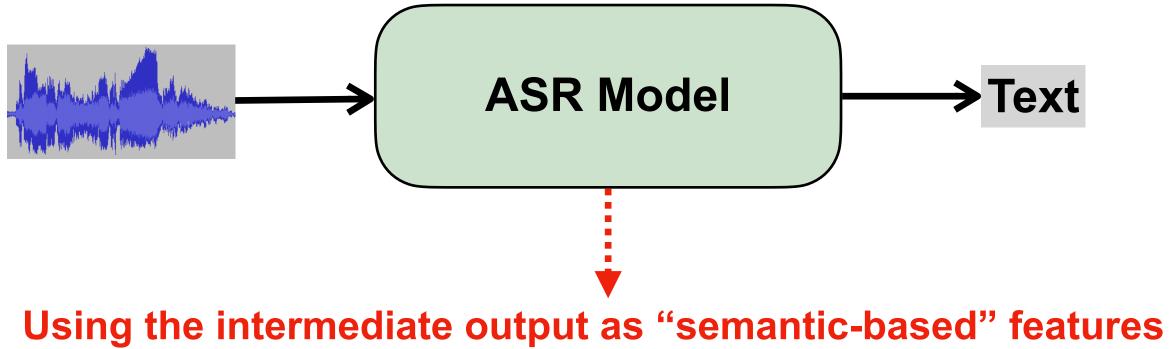
Auto-Encoder SVC: The Early Researches



(Review) Non-Parallel SVC: Auto-Encoder School



Non-Parallel VC/SVC — a.k.a Recognition & Synthesis VC/SVC

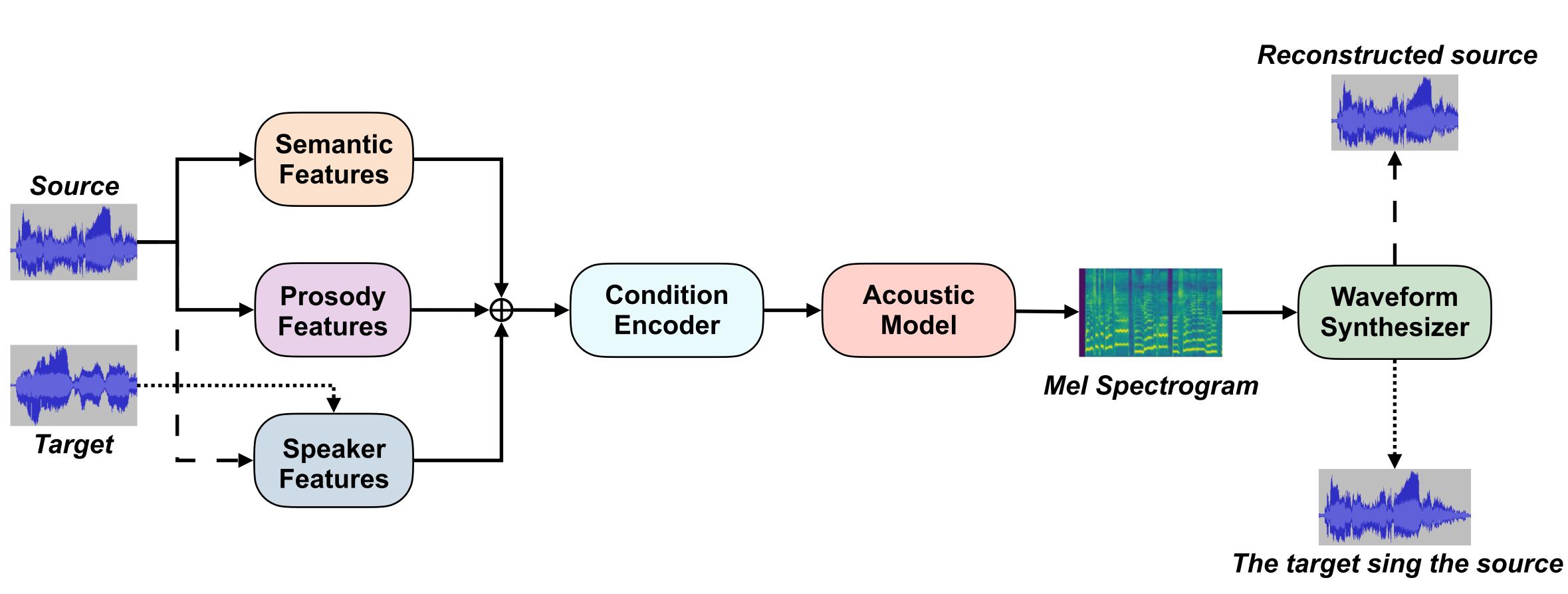


Why do we use the dense semantic features instead of the symbolic text?

- There are errors for the recognized symbolic text. (1)
- It takes more time to obtain the symbolic text than just extracting dense features. 2
- 3 for improving the intelligibility of the synthesized voice.

There are more acoustic information (such as pronunciation) in the dense features, which is better

Modern Singing Voice Conversion Pipeline



Roadmap

- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization

• Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for

Amphion SVC: Supported Model Architectures

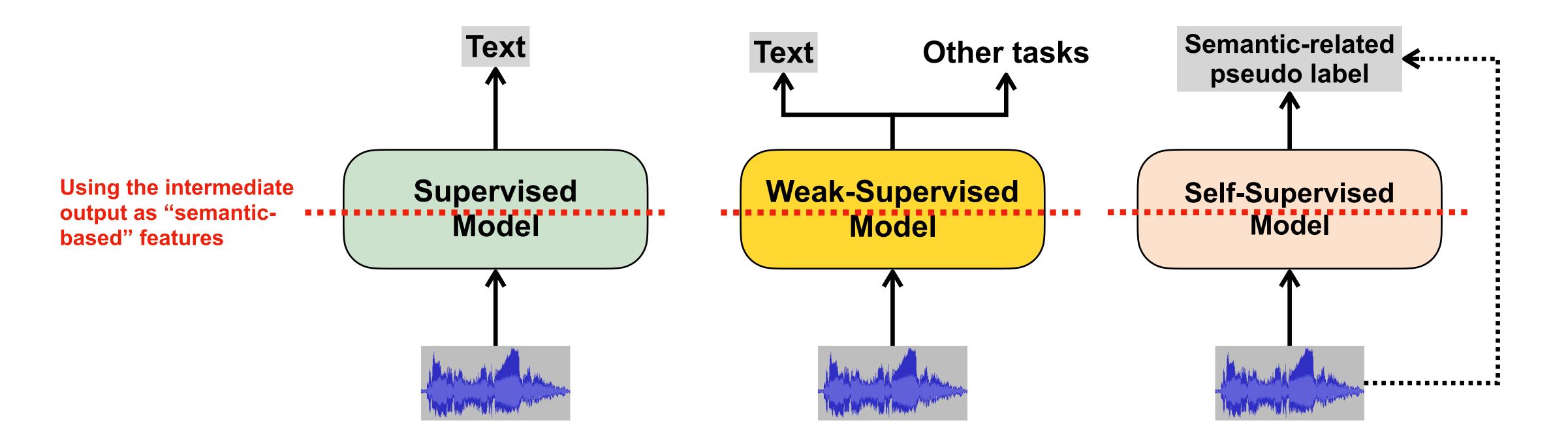
- Semantic Features Extractor
 - WeNet, Whisper, ContentVec
 - Joint Usage of Diverse Semantic Features Extractors
- Prosody Features
 - F0 and energy
- Speaker Features
 - One-hot Speaker ID
 - Features of Pretrained SV model

- Acoustic Model
 - Diffusion-based
 - Transformer-based
 - VAE- and Flow-based
- Waveform Synthesizer
 - GAN-based
 - Diffusion-based

Semantic Features: Why Joint Usage of Multiple Extractors?

Background of Semantic-based Pretrained Models:

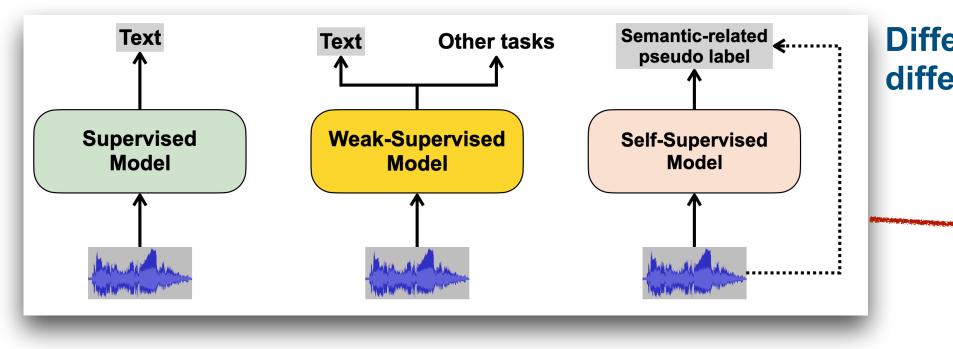
- Varied choices: Classic ASR models, Whisper, HuBERT, Wav2Vec, WavLM, ContentVec... 0
- **High pretraining cost**: E.g., Whisper-large (1.5B parameters, 680k hours training data) 0



Semantic Features: Why Joint Usage of Multiple Extractors?

• However, for the downstream tasks (such as SVC), the underlying knowledge of these models remains largely unknown:

Requirements of SVC	С
To model melody	
To model lyrics	Со
To model auxiliary acoustic information	S
To be robust for in-the-wild acoustic environment	V



Capability of the Semantic-based Features

Whether could or not remains unknown

uld. But exactly how much remains unknown

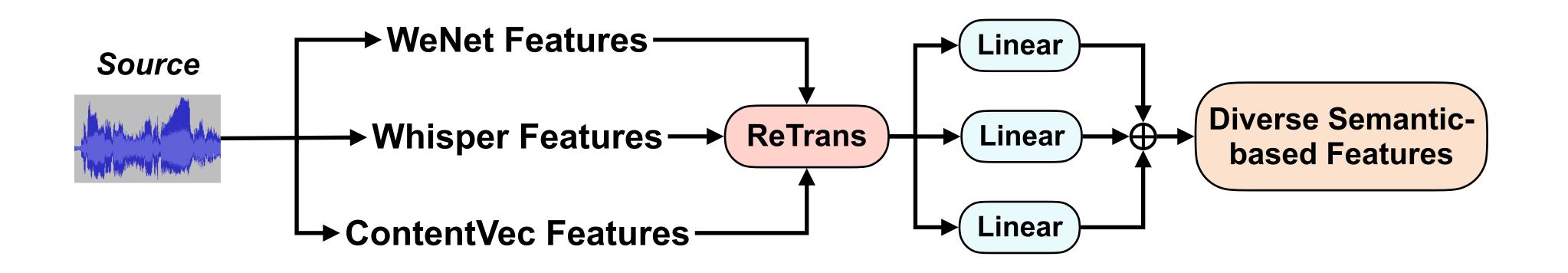
Could. But whether the information is speaker-agnostic or not remains unknown

Whether is robust or not remains unknown

Different pretraining ways will yield different underlying knowledge

Could diverse pretrained models be complementary for SVC?

Challenge: Time Resolution Mismatch of Multiple Semantic Features



Algorithm 1 ReTrans for features of audio pretrained models **Input**: f – the features to be transformed whose frame rate is

 r_1 Hz.

Parameter: r_2 – The desired frame rate to transform **Output:** \mathbf{f}' – the transformed features whose frame rate is r_2 Hz

- 1: $c \leftarrow \mathbf{gcd}(r_1, r_2)$ \triangleright The greatest common divisor
- 2: $\mathbf{f}' \leftarrow \mathbf{upsample} (\mathbf{f}, r_2/c)$ ▷ Upsampling
- 3: $\mathbf{f}' \leftarrow \mathbf{downsample} \ (\mathbf{f}', r_1/c) \qquad \triangleright \mathbf{Downsampling}$
- 4: **return f**

High efficiency; No more training cost

Results: Using Only Semantic-based Features for SVC

Semantic-based Features	MCD (↓)	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)
Ground Truth	0.000	1.000	0.0	12.9%	1.000
WeNet	10.324	0.203	423.4	38.2%	0.912
Whisper	8.229	0.524	297.3	18.9%	0.914
ContentVec	8.972	0.491	361.0	22.1%	0.918
WeNet + Whisper	8.345	0.540	284.2	16.8%	0.911
WeNet + ContentVec	8.870	0.525	329.5	19.9%	0.912
Whisper + ContentVec	8.201	0.548	279.6	16.9%	0.912
WeNet + Whisper + ContentVec	8.249	0.572	278.5	16.1%	0.913

1 To model melody:

Whisper > ContentVec > WeNet

2 To model lyrics:

Whisper > ContentVec > WeNet

③ To be speaker-agnostic:

All the three is good

*	Weak-supervised and self-supervised models
	is more robust for singing voice
*	I arge-scale pretraining corpus is necessary

Results: Complementary roles of Diverse Semantic-based Features

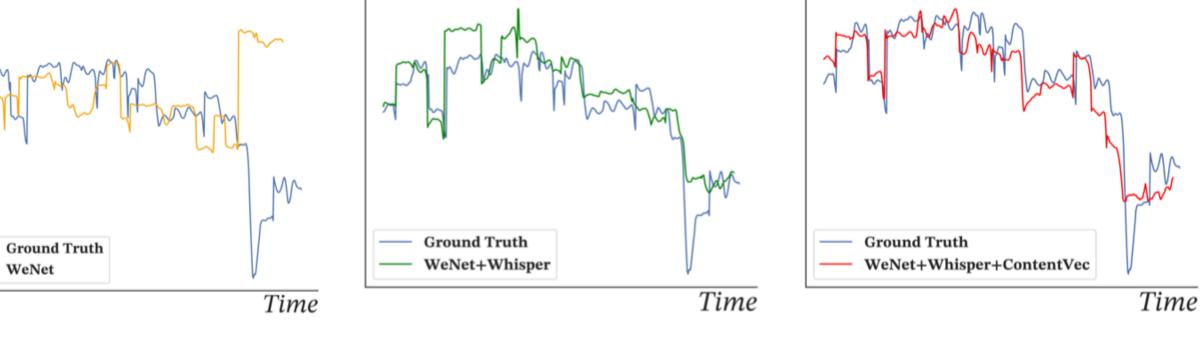
Semantic-based Features	MCD (↓)	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)
Ground Truth	0.000	1.000	0.0	12.9%	1.000
WeNet	10.324	0.203	423.4	38.2%	0.912
Whisper	8.229	0.524	297.3	18.9%	0.914
ContentVec	8.972	0.491	361.0	22.1%	0.918
WeNet + Whisper	8.345	0.540	284.2	16.8%	0.911
WeNet + ContentVec	8.870	0.525	329.5	19.9%	0.912
Whisper + ContentVec	8.201	0.548	279.6	16.9%	0.912
WeNet + Whisper + ContentVec	8.249	2 0.572	278.5	16.1%	0.913

Using diverse semantic-based features:

- Most results are promoted stage by stage (1)
- Introducing explicit melody modeling for (2)SVC remains necessary

Source

After Introducing F0

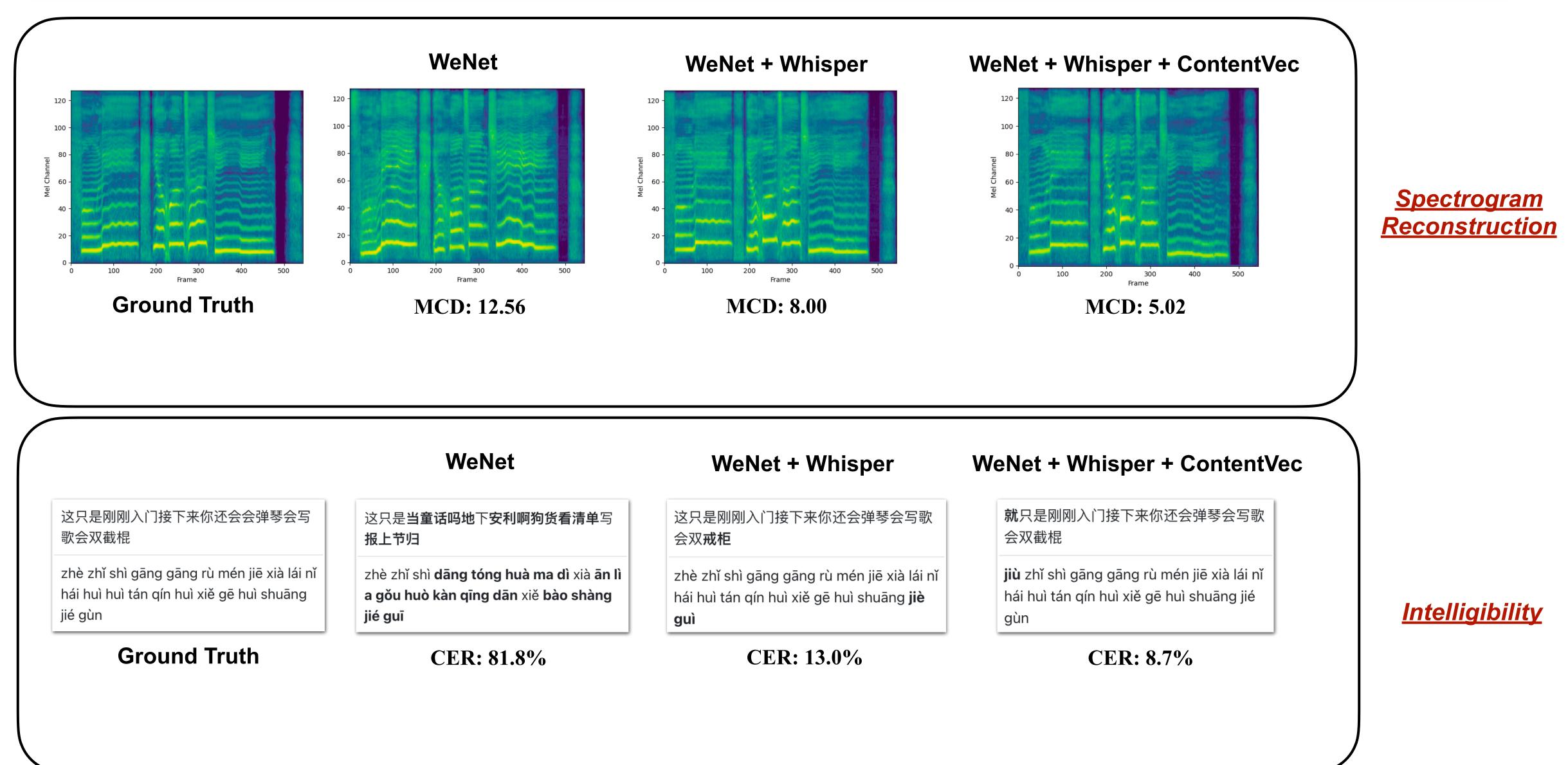


WeNet

WeNet + Whisper

WeNet + Whisper + ContentVec

Results: Complementary roles of Diverse Semantic-based Features



Results: SVC Framework based on Diverse Semantic-based Features Fusion

	Base Model	Semantic-based Features	Recording Studio Setting				In-the-Wild Setting			
	Duschiouci		FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)	FOCORR (†)	FORMSE (\downarrow)	CER (\downarrow)	SIM (†)
		WeNet	0.849	149.3	15.6%	0.878	0.871	210.0	40.0%	0.865
	TransformerSVC	WeNet + Whisper	0.924	77.2	14.9%	0.881	0.848			
Objective		0.857	186.7	23.3%	0.868					
Evaluation		WeNet 0.937 175.3 19.1% 0.890	0.919	91.3	57.7%	0.869				
VitsSVC	WeNet + Whisper	0.945	144.4	17.8%	0.890	0.920	86.9	35.2%	0.869	
		WeNet + Whisper + ContentVec	0.946	112.9	17.7%	0.886	0.921	79.5	32.3%	0.870
		WeNet 0.936 55.5 15.8% 0.875	0.901	87.8	60.8%	0.855				
	DiffWaveNetSVC	WeNet + Whisper	0.943	49.5	15.2%	0.884	0.921	73.6	21.1%	21.1% 0.865
		WeNet + Whisper + ContentVec	0.940	55.2	15.7%	0.884	0.919	79.9	23.3%	0.867

	Semantic-based Features	Recording St	udio Setting	In-the-Wil	d Setting
Subjective Evaluation		Naturalness (†)	Similarity (\uparrow)	Naturalness (†)	Similarity (†)
Subjective Evaluation	WeNet	2.72 ± 0.22	2.64 ± 0.21	2.85 ± 0.21	2.34 ± 0.20
for DiffWaveNetSVC	WeNet + Whisper	4.02 ± 0.18	3.13 ± 0.17	3.70 ± 0.18	2.86 ± 0.23
	WeNet + Whisper + ContentVec	4.14 ± 0.19	3.25 ± 0.18	3.71 ± 0.18	2.82 ± 0.23

 $(\mathbf{1})$

work for various base models in both settings.

is also effective.

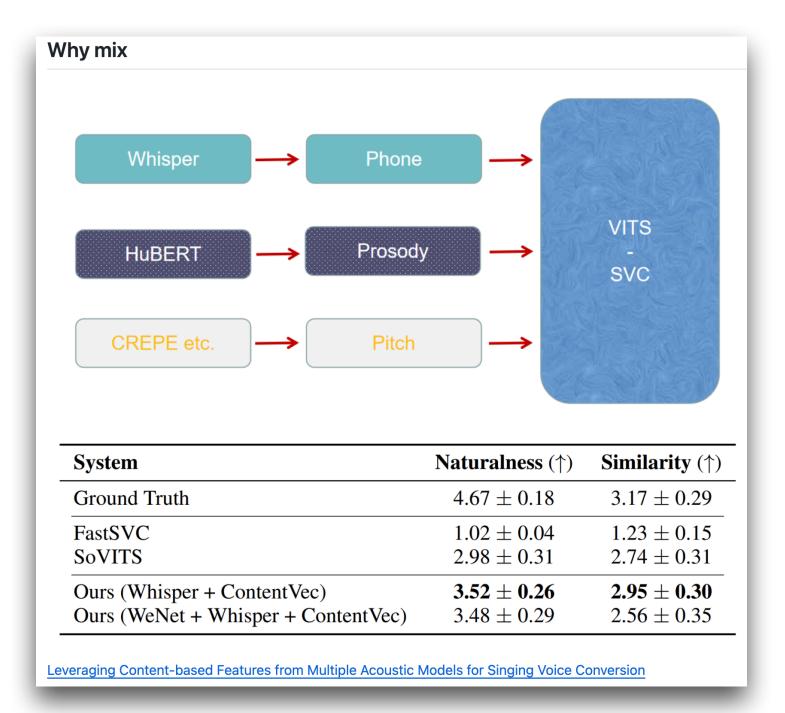
The full scores of Naturalness and Similarity are 5 and 4

Generalization: The idea of diverse semantic-based features fusion

- 2 **Robustness:** for the more challenging in-the-wild setting, such solution

AI Singer Demo and Impact

Make Taylor Swift sing Mandarin song!



• Our idea of using multiple content features has been borrowed and integrated into <u>So-</u> VITS-SVC 5.0 (Github over 2k stars)

AI Singer Demo and Impact

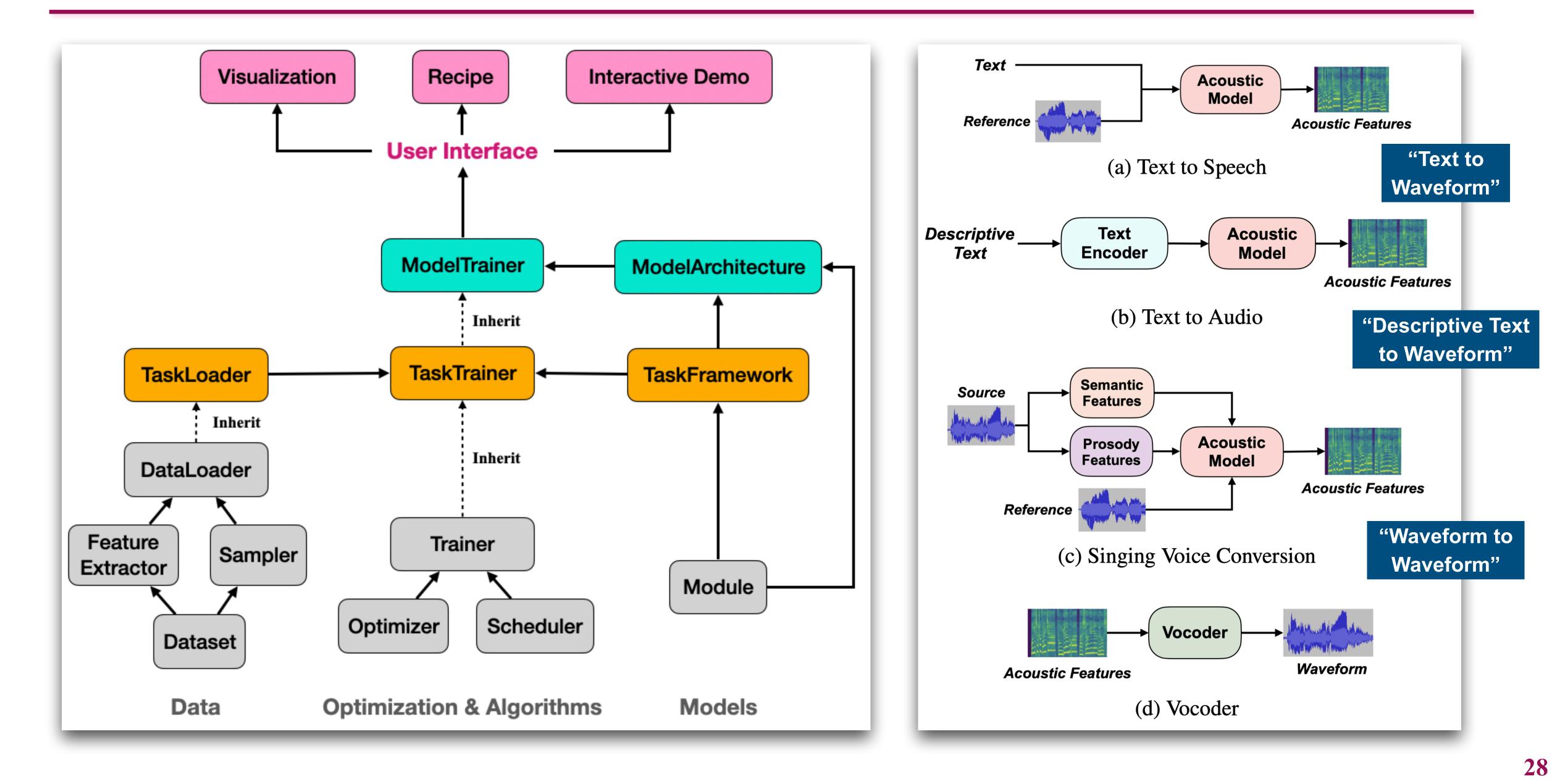
• Highly positive comments from the market

Roadmap

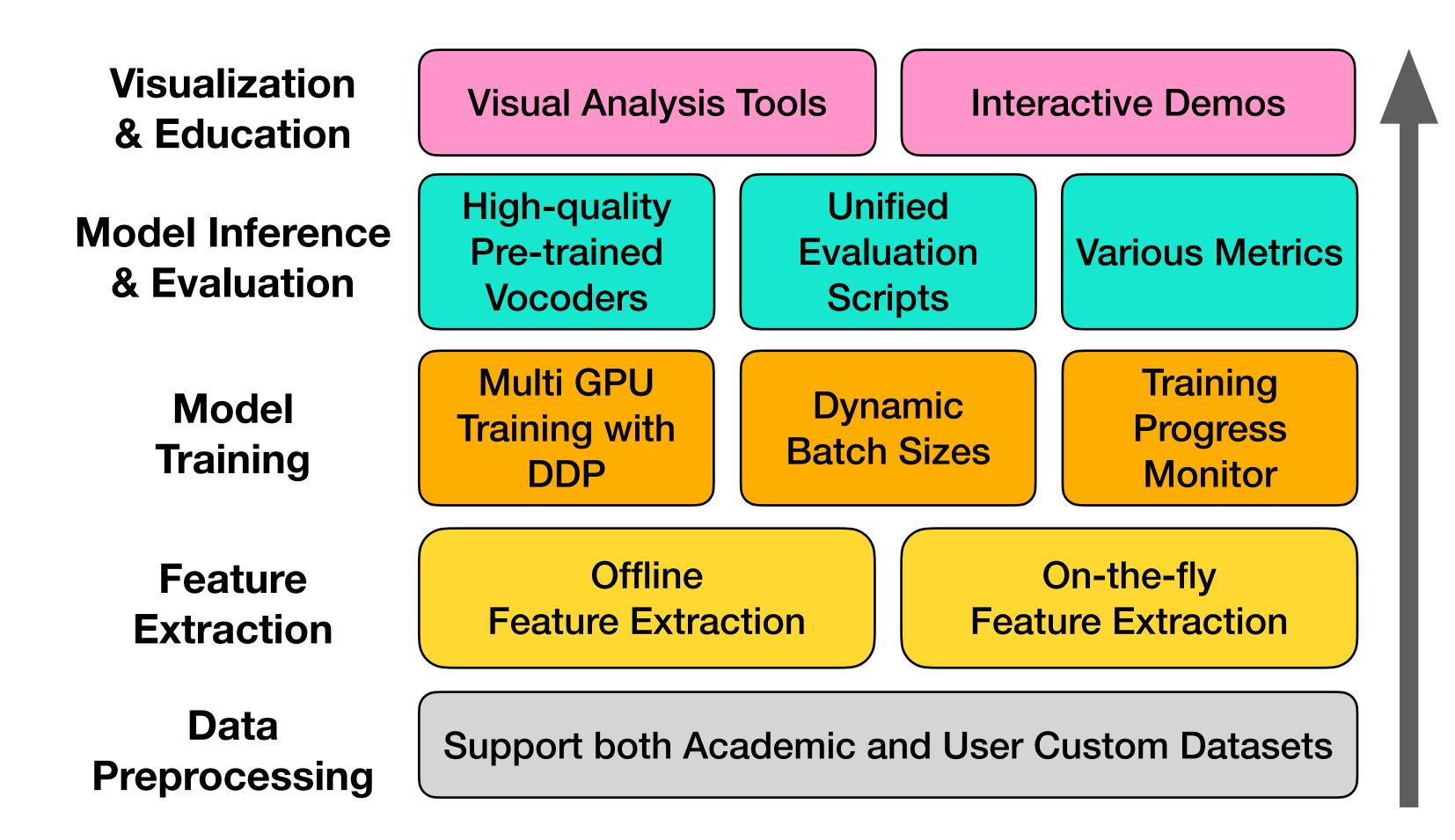
- Singing Voice Conversion
 - Definition, Classic Works, and Modern Pipeline
- Singing Voice Conversion in Amphion
 - Supported Model Architectures
 - 0 Singing Voice Conversion
- Amphion's Philosophy
 - Unique strengths, Supported Features, and Visualization

Our research: Leveraging Diverse Semantic-based Audio Pretrained Models for

Strength1: Unified Audio Generation Framework



Strength2: Beginner-friendly End-to-End Workflow



One-stop research platform suitable for both novices and experienced researchers

Strength3: Open Pre-trained Models

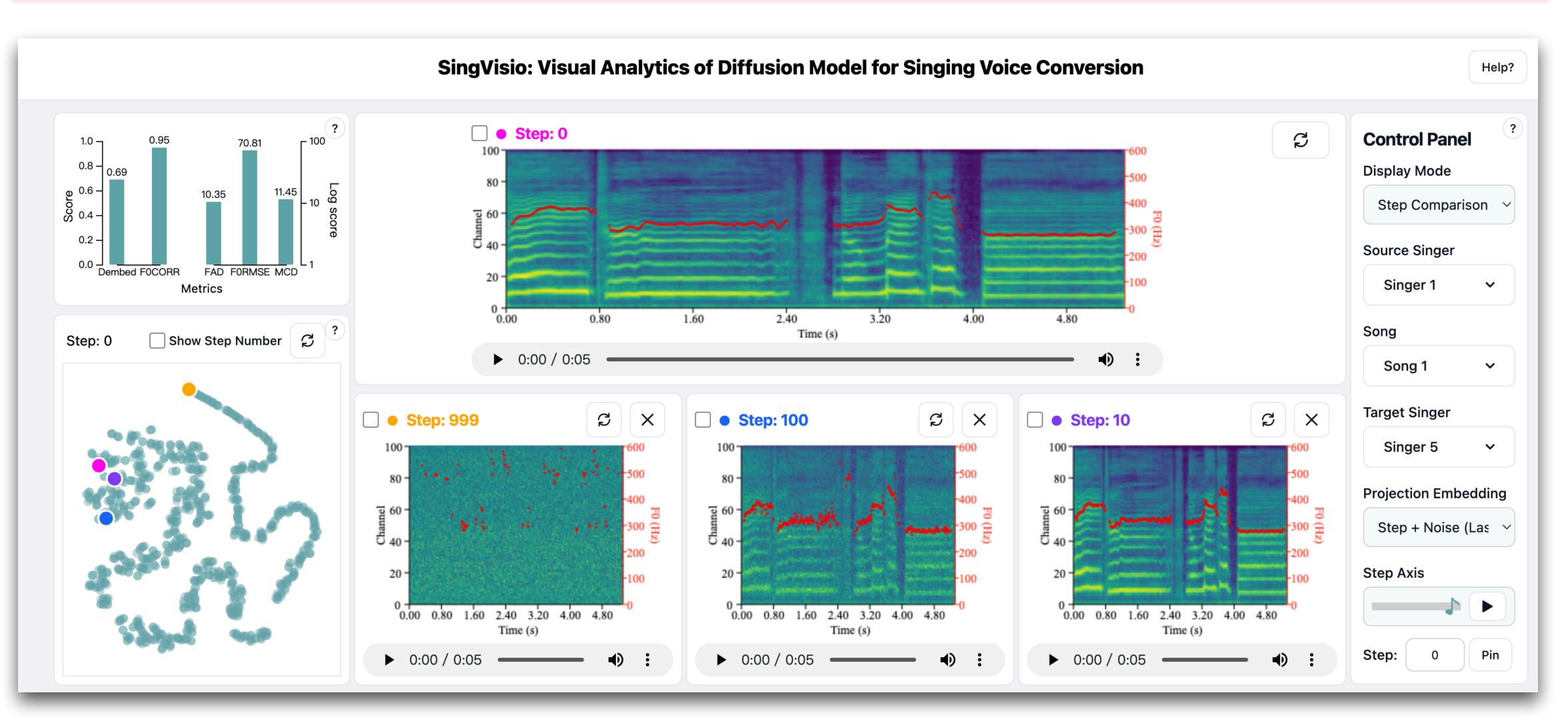
Release Criteria	Description
Model Metadata	Detail the model architecture and the numb parameters.
Training Datasets	List all the training corpus and their sources
Training Configuration	Detail the training hyberparameters (like ba learning rate, and number of training steps) computational platform
Evaluation Results	Display the evaluation results and the perform comparison to other typical baselines.
Usage Instructions	Instruct how to inference and fine-tune bas pre-trained model.
Interactive Demo	Provide an online interactive demo for user explore.
License	Clear the licensing details including how the can be utilized, shared, and modified.
Ethical Considerations	Address ethical considerations related to thapplication, focusing on privacy, consent, a encourage responsible usage.

ber of S. atch size,) and the formance sed on the rs to he model the model's and bias, to

Updated 2 d	on/vits_ljspeech laysago		
• amphio Updated 2 d	on/hifigan_ljspeed lays ago	ch	
•• amphi Updated Ja	on/valle_librilig n 24	ıt_6k	
💀 amphi Updated De	on/diffwave c21,2023		
-	on/hifigan_speech_ c21,2023 • ♡ 3	_bigdata	
-	on/naturalspeech2 _. c19,2023 • ♡ 5	_libritts	
<pre>mamphie Updated 2 c</pre>	on/fastspeech2_ljs aysago	speech	
₩ amphio Updated3c	on/vits_hifitts ays ago		
• amphic Updated Ja	on/valle_libritts n11 • ♡ 2		
	on/BigVGAN_singing c21,2023 • ♡ 1	<pre>s_bigdata</pre>	
	on/singing_voice_c c21,2023 • ♡ 14	conversion	

Supported **Pretrained Models** (Updating)

Strength4: Visualization and Interactivity



Analytics of Diffusion Model for Singing Voice Conversion.

Liumeng Xue*, Chaoren Wang*, Mingxuan Wang, Xueyao Zhang, Jun Han, Zhizheng Wu. SingVisio: Visual

THANKS



Xueyao Zhang (张雪遥)

- Amphion v0.1's co-founder
- - Singing Voice Processing
 - Music Generation

Amphion Technical Report: https://arxiv.org/abs/2312.09911 Amphion GitHub: https://github.com/open-mmlab/Amphion

✦ Second-year PhD student, Supervised by Prof Zhizheng Wu School of Data Science, CUHK-Shenzhen Homepage: <u>https://www.zhangxueyao.com/</u>

Project: <u>https://github.com/open-mmlab/Amphion</u> (3.5k stars)

Research interest: "AI + Music", especially on:

Amphion Offical Account

